Quicksort

• Like Mergesort:
 • Divide and conquer
 • $O(n \log n)$ run time (kind of...)

• Unlike Mergesort:
 • Divide step is the “hard” part
 • *Typically* faster than Mergesort
Quicksort

Idea: pick a \textit{pivot} element, recursively sort two sublists around that element

- \textbf{Divide}: select \textit{pivot} element p, $\text{Partition}(p)$
- \textbf{Conquer}: recursively sort left and right sublists
- \textbf{Combine}: Nothing!
Partition (Divide step)

Given: a list, a pivot p

Start: unordered list

| 8 | 5 | 7 | 3 | 12 | 10 | 1 | 2 | 4 | 9 | 6 | 11 |

Goal: All elements $< p$ on left, all $> p$ on right

| 5 | 7 | 3 | 1 | 2 | 4 | 6 | 8 | 12 | 10 | 9 | 11 |
Partition, Procedure

If \textbf{Begin} value < \textit{p}, move \textbf{Begin} right
Else swap \textbf{Begin} value with \textbf{End} value, move \textbf{End} Left
Done when \textbf{Begin} = \textbf{End}
Partition, Procedure

If \texttt{Begin value} < p, move \texttt{Begin} right
Else swap \texttt{Begin} value with \texttt{End} value, move \texttt{End} Left
Done when \texttt{Begin} = \texttt{End}
Partition, Procedure

If \(\text{Begin} \) value \(<\ p \), move \(\text{Begin} \) right
Else swap \(\text{Begin} \) value with \(\text{End} \) value, move \(\text{End} \) left
Done when \(\text{Begin} = \text{End} \)

Case 1: meet at element \(< p \\
Swap \(p \) with pointer position (2 in this case)
Partition, Procedure

If Begin value $< p$, move Begin right
Else swap Begin value with End value, move End Left
Done when $\text{Begin} = \text{End}$

Case 2: meet at element $> p$
Swap p with value to the left (2 in this case)
Partition Summary

1. Put p at beginning of list
2. Put a pointer (Begin) just after p, and a pointer (End) at the end of the list
3. While Begin < End:
 1. If Begin value < p, move Begin right
 2. Else swap Begin value with End value, move End Left
4. If pointers meet at element < p: Swap p with pointer position
5. Else If pointers meet at element > p: Swap p with value to the left

Run time? $O(n)$
Conquer

Recursively sort Left and Right sublists

All elements < p

All elements > p

Exactly where it belongs!
Quicksort Run Time (Best)

If the **pivot** is always the median:

Then we divide in half each time

\[T(n) = 2T\left(\frac{n}{2}\right) + n \]

\[T(n) = O(n \log n) \]
Quicksort Run Time (Worst)

If the pivot is always at the extreme:

Then we shorten by 1 each time

\[T(n) = T(n - 1) + n \]

\[T(n) = O(n^2) \]
Quicksort Run Time (Worst)

\[T(n) = T(n - 1) + n \]

\[T(n) = 1 + 2 + 3 + \cdots + n \]

\[T(n) = \frac{n(n + 1)}{2} \]

\[T(n) = O(n^2) \]
Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

So we shorten by 1 each time

\[T(n) = T(n - 1) + n \]

\[T(n) = O(n^2) \]
Good Pivot

• What makes a good Pivot?
 • Roughly even split between left and right
 • Ideally: median

• There are ways to find the median in linear time, but it’s complicated and slow and you’re better off using mergesort

• In Practice:
 • Pick a random value as a pivot
 • Pick the middle of 3 random values as the pivot
Properties of Quick Sort

• Worst Case Running time:
 • $\Theta(n^2)$
 • But $\Theta(n \log n)$ average! And typically faster than mergesort!

• In-Place?
 •Debatable

• Adaptive?
 • No!

• Stable?
 • No!
More Formal Definition

• Input:
 • An array A of items
 • A comparison function for these items
 • Given two items x and y, we can determine whether $x < y$, $x > y$, or $x = y$

• Output:
 • A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
 • Permutation: a sequence of the same items but perhaps in a different order
Improving Running time

• Recall our definition of the sorting problem:
 • Input:
 • An array \(A \) of items
 • A comparison function for these items
 • Given two items \(x \) and \(y \), we can determine whether \(x < y \), \(x > y \), or \(x = y \)
 • Output:
 • A permutation of \(A \) such that if \(i \leq j \) then \(A[i] \leq A[j] \)

• Under this definition, it is impossible to write an algorithm faster than \(n \log n \) asymptotically.

• Observation:
 • Sometimes there might be ways to determine the position of values without comparisons!
“Linear Time” Sorting Algorithms

• Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
 • Examples:
 • The list contains only positive integers less than k
 • The number of distinct values in the list is much smaller than the length of the list

• The running time expression will always have a term other than the list’s length to account for this assumption
 • Examples:
 • Running time might be $\Theta(k \cdot n)$ where k is the range/count of values
BucketSort

• Assumes the array contains integers between 0 and $k - 1$ (or some other small range)

• Idea:
 • Use each value as an index into an array of size k
 • Add the item into the “bucket” at that index (e.g. linked list)
 • Get sorted array by “appending” all the buckets
BucketSort Running Time

• Create array of k buckets
 • Either $\Theta(k)$ or $\Theta(1)$ depending on some things...
• Insert all n things into buckets
 • $\Theta(n)$
• Empty buckets into an array
 • $\Theta(n + k)$
• Overall:
 • $\Theta(n + k)$
• When is this better than mergesort?
Properties of BucketSort

- In-Place?
 - No

- Adaptive?
 - No

- Stable?
 - Yes!
RadixSort

• Radix: The base of a number system
 • We’ll use base 10, most implementations will use larger bases

• Idea:
 • BucketSort by each digit, one at a time, from least significant to most significant

Place each element into a “bucket” according to its 1’s place
RadixSort

- Radix: The base of a number system
 - We’ll use base 10, most implementations will use larger bases

- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

<table>
<thead>
<tr>
<th>800</th>
<th>801</th>
<th>401</th>
<th>101</th>
<th>901</th>
<th>121</th>
<th>9</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>801</td>
<td>401</td>
<td>101</td>
<td>901</td>
<td>121</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Place each element into a “bucket” according to its 10’s place
RadixSort

• Radix: The base of a number system
 • We’ll use base 10, most implementations will use larger bases

• Idea:
 • BucketSort by each digit, one at a time, from least significant to most significant

Place each element into a “bucket” according to its 100’s place
RadixSort

• Radix: The base of a number system
 • We’ll use base 10, most implementations will use larger bases

• Idea:
 • BucketSort by each digit, one at a time, from least significant to most significant

<table>
<thead>
<tr>
<th>018</th>
<th>101</th>
<th>103</th>
<th>113</th>
<th>121</th>
<th>245</th>
<th>255</th>
<th>323</th>
<th>401</th>
<th>512</th>
<th>555</th>
<th>800</th>
<th>801</th>
<th>823</th>
<th>901</th>
<th>999</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Convert back into an array
RadixSort Running Time

• Suppose largest value is m
• Choose a radix (base of representation) b
• BucketSort all n things using b buckets
 • $\Theta(n + k)$
• Repeat once per each digit
 • $\log_b m$ iterations
• Overall:
 • $\Theta(n \log_b m + b \log_b m)$
• In practice, you can select the value of b to optimize running time
• When is this better than mergesort?
ARPANET
Undirected Graphs

Definition: $G = (V, E)$

Vertices/Nodes

$V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Edges

$E = \{(1, 2), (2, 3), (1, 3), \ldots \}$
Directed Graphs

Definition: \(G = (V, E) \)

Vertices/Nodes

\(V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \)

Edges

\(E = \{(1,2), (2,3), (1,3), \ldots\} \)
Self-Edges and Duplicate Edges

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice). Some may also have self-edges (e.g. here there is an edge from 1 to 1). Graph with Neither self-edges nor duplicate edges are called simple graphs
Weighted Graphs

Definition: \(G = (V, E) \)

\(w(e) = \text{weight of edge } e \)

Vertices/Nodes

\(V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \)

Edges

\(E = \{(1, 2), (2, 3), (1, 3), \ldots\} \)
Graph Applications

- For each application below, consider:
 - What are the nodes, what are the edges?
 - Is the graph directed?
 - Is the graph simple?
 - Is the graph weighted?
- Facebook friends
- Twitter followers
- Java inheritance
- Airline Routes
Some Graph Terms

- **Adjacent/Neighbors**
 - Nodes are adjacent/neighbors if they share an edge

- **Degree**
 - Number of “neighbors” of a vertex

- **Indegree**
 - Number of incoming neighbors

- **Outdegree**
 - Number of outgoing neighbors
Graph Operations

• To represent a Graph (i.e. build a data structure) we need:
 • Add Edge
 • Remove Edge
 • Check if Edge Exists
 • Get Neighbors (incoming)
 • Get Neighbors (outgoing)
Adjacency List

Time/Space Tradeoffs
Space to represent: $\Theta(n + m)$
Add Edge: $\Theta(1)$
Remove Edge: $\Theta(1)$
Check if Edge Exists: $\Theta(n)$
Get Neighbors (incoming): $\Theta(n + m)$
Get Neighbors (outgoing): $\Theta(\text{deg}(v))$

$|V| = n$
$|E| = m$
Adjacency List (Weighted)

Time/Space Tradeoffs
Space to represent: $\Theta(n + m)$
Add Edge: $\Theta(1)$
Remove Edge: $\Theta(1)$
Check if Edge Exists: $\Theta(n)$
Get Neighbors (incoming): $\Theta(?)$
Get Neighbors (outgoing): $\Theta(?)$

$|V| = n$
$|E| = m$
Adjacency Matrix

Time/Space Tradeoffs
Space to represent: $\Theta(\cdot)$
Add Edge: $\Theta(\cdot)$
Remove Edge: $\Theta(\cdot)$
Check if Edge Exists: $\Theta(\cdot)$
Get Neighbors (incoming): $\Theta(\cdot)$
Get Neighbors (outgoing): $\Theta(\cdot)$

$|V| = n$
$|E| = m$
Adjacency Matrix (weighted)

Time/Space Tradeoffs
Space to represent: $\Theta(n^2)$
Add Edge: $\Theta(1)$
Remove Edge: $\Theta(1)$
Check if Edge Exists: $\Theta(1)$
Get Neighbors (incoming): $\Theta(n)$
Get Neighbors (outgoing): $\Theta(n)$

$|V| = n$
$|E| = m$
Aside

• Almost always, adjacency lists are the better choice
• Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren’t that bad
Definition: Path

A sequence of nodes \((v_1, v_2, ..., v_k)\) s.t. \(\forall 1 \leq i \leq k - 1, (v_i, v_{i+1}) \in E\)

Simple Path:
A path in which each node appears at most once

Cycle:
A path which starts and ends in the same place
Definition: (Strongly) Connected Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2
Definition: (Strongly) Connected Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2
Definition: Weakly Connected Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2 ignoring direction of edges.

Weakly Connected

Weakly Connected
Definition: Complete Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is an edge from v_1 to v_2
Graph Density, Data Structures, Efficiency

• The maximum number of edges in a graph is $\Theta(|V|^2)$:
 - Undirected and simple: $\frac{|V|(|V|-1)}{2}$
 - Directed and simple: $|V|(|V|-1)$
 - Directed and non-simple (but no duplicates): $|V|^2$

• If the graph is connected, the minimum number of edges is $|V|-1$

• If $|E| \in \Theta(|V|^2)$ we say the graph is dense

• If $|E| \in \Theta(|V|)$ we say the graph is sparse

• Because $|E|$ is not always near to $|V|^2$ we do not typically substitute $|V|^2$ for $|E|$ in running times, but leave it as a separate variable
Definition: Tree

A Graph $G = (V, E)$ is a tree if it is undirected, connected, and has no cycles (i.e. is acyclic). Often one node is identified as the “root”