Sorting

- Rearrangement of items into some defined sequence
 - Usually: reordering a list from smallest to largest according to some metric

- Why sort things?
 - Enables binary search
 - Human readability
 - Sorting is a helpful preprocessing step for other algorithms
More Formal Definition

• Input:
 • An array A of items
 • A comparison function for these items
 • Given two items x and y, we can determine whether $x < y$, $x > y$, or $x = y$

• Output:
 • A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
 • Permutation: a sequence of the same items but perhaps in a different order
Sorting “Landscape”

• There is no singular best algorithm for sorting
• Some are faster, some are slower
• Some use more memory, some use less
• Some are super extra fast if your data meets certain assumptions
• Some have other special properties that make them valuable
• No sorting algorithm can have only all the “best” attributes
Properties to consider

• Running time
 • What is the worst case running time?
 • What is the best case?
 • Does the algorithm run faster if the list is close to sorted?
 • If so, we call it Adaptive

• Memory Usage
 • How much memory does the algorithm use in addition to the array?
 • If $\Theta(1)$ then we call it In-Place
 • Sorts things by only swapping things in the same array we started with.

• What happens when there is a “tie”?
 • If “tied” elements are guaranteed to remain in the same relative order, this is called a Stable Sort
 • E.g. a stable sort guarantees that, after sorting by the first initial and then by last initial, “N.J.B.” will come before “S.C.B”
“In Place” Sorting Algorithm

• A sorting algorithm which requires no extra data structures
• Idea: It sorts items just by swapping things in the same array given
• Definition: it only uses $\Theta(1)$ extra space
Selection Sort

• Idea: Find the next smallest element, swap it into the next index in the array
Selection Sort

- Swap the thing at index 0 with the smallest thing in the array
- Swap the thing at index 1 with the smallest thing after index 0
- ...
- Swap the thing at index i with the smallest thing after index $i-1$

```
for (i=0; i<a.length; i++){
    smallest = i;
    for (j=i; j<a.length; j++){
        if (a[j]<a[smallest]){ smallest=j;}
    }
    temp = a[i];
    a[i] = a[smallest];
    a[smallest] = a[i];
}
```

Running Time:

- Worst Case: $\Theta(n^2)$
- Best Case: $\Theta(n^2)$
Properties of Selection Sort

• In-Place?
 • Yes!

• Adaptive?
 • No

• Stable?
 • Yes!
 • As long as you always pick the left-most element when there’s a “tie”
Insertion Sort

• Idea: Maintain a sorted list prefix, extend that prefix by “inserting” the next element
Insertion Sort

• If the items at index 0 and 1 are out of order, swap them
• Keep swapping the item at index 2 with the thing to its left as long as the left thing is larger
• ...
• Keep swapping the item at index i with the thing to its left as long as the left thing is larger

```
for (i=1; i<a.length; i++){
    prev = i-1;
    while(a[i] < a[prev] && prev > -1){
        temp = a[i];
        a[i] = a[prev];
        a[prev] = a[i];
        i--;
        prev--;
    }
}
```

Running Time:

Worst Case: $\Theta(n^2)$
Best Case: $\Theta(n)$
Properties of Insertion Sort

• In-Place?
 • Yes!

• Adaptive?
 • Yes!

• Stable?
 • Yes!
 • As long as you don’t swap when there’s a tie

• Online!
 • You can begin sorting the list before you have all the elements
 • “Insert” items as they arrive
Aside: Bubble Sort – we won’t cover it

"the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems” – Donald Knuth, The Art of Computer Programming
Heap Sort

- **Idea**: Build a maxHeap, repeatedly delete the max element from the heap to build sorted list Right-to-Left

Max Heap Property: Each node is larger than its children
Heap Sort

• **Remove the Max element (i.e. the root) from the Heap:** replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap property, done. Else swap with largest child and repeat on that subtree
Heap Sort

- Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap property, done. Else swap with largest child and repeat on that subtree
Heap Sort

- Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap property, done. Else swap with largest child and repeat on that subtree
Heap Sort

• Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap property, done. Else swap with largest child and repeat on that subtree
Heap Sort

• Build a heap
• Call deleteMax
• Put that at the end of the array

myHeap = buildHeap(a);
for (int i = a.length-1; i>=0; i--){
 item = myHeap.deleteMax();
 a[i] = item;
}
Properties of Heap Sort

• Worst Case Running time:
 • \(\Theta(n \log n) \)

• In-Place?
 • Not yet!
 • But in general, yes!

• Adaptive?
 • No

• Stable?
 • No
In Place Heap Sort

• **Idea:** When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter
Heap Sort

- **Idea**: When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter.
Heap Sort

• **Idea:** When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter.
Heap Sort

- **Idea:** When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter.
Heap Sort

- **Idea:** When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter.
Heap Sort

• **Idea:** When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter
Heap Sort

- **Idea**: When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter.
In Place Heap Sort

• Build a heap using the same array (Floyd’s build heap algorithm works)
• Call deleteMax
• Put that at the end of the array

```
buildHeap(a);
for (int i = a.length-1; i>=0; i--){
    temp=a[i]
    a[i] = a[0];
    a[0] = temp;
    percolateDown(0);
}
```

Running Time:

- Worst Case: $\Theta(\cdot)$
- Best Case: $\Theta(\cdot)$
Floyd’s buildHeap method

- Working towards the root, one row at a time, percolate down

```java
buildHeap()
{
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
```
Divide And Conquer Sorting

• Divide and Conquer:
 • Recursive algorithm design technique
 • Solve a large problem by breaking it up into smaller versions of the same problem
Divide and Conquer

• **Base Case:**
 • If the problem is “small” then solve directly and return

• **Divide:**
 • Break the problem into subproblem(s), each smaller instances

• **Conquer:**
 • Solve subproblem(s) recursively

• **Combine:**
 • Use solutions to subproblems to solve original problem
Divide and Conquer Template Pseudocode

def my_DandC(problem):
 // Base Case
 if (problem.size() <= small_value):
 return solve(problem); // directly solve (e.g., brute force)

 // Divide
 List subproblems = divide(problem);

 // Conquer
 solutions = new List();
 for (sub : subproblems):
 subsolution = my_DandC(sub);
 solutions.add(subsolution);

 // Combine
 return combine(solutions);
Merge Sort

• **Base Case:**
 • If the list is of length 1 or 0, it’s already sorted, so just return it

• **Divide:**
 • Split the list into two “sublists” of (roughly) equal length

• **Conquer:**
 • Sort both lists recursively

• **Combine:**
 • **Merge** sorted sublists into one sorted list
Merge Sort In Action!

Sort between indices \(\text{low} \) and \(\text{high} \)

Base Case: if \(\text{low} == \text{high} \) then that range is already sorted!

Divide and Conquer: Otherwise call \text{mergesort} on ranges \((\text{low}, \frac{\text{low} + \text{high}}{2}) \) and \((\frac{\text{low} + \text{high}}{2} + 1, \text{high}) \)

After Recursion:
Merge (the combine part)

Create a new array to merge into, and 3 pointers/indices:

- \textbf{L_next}: the smallest “unmerged” thing on the left
- \textbf{R_next}: the smallest “unmerged” thing on the right
- \textbf{M_next}: where the next smallest thing goes in the merged array

One-by-one: put the smallest of \textbf{L_next} and \textbf{R_next} into \textbf{M_next}, then advance both \textbf{M_next} and whichever of \textbf{L/R} was used.
Merge Sort Pseudocode

```java
void mergesort(myArray){
    ms_helper(myArray, 0, myArray.length());
}

void mshelper(myArray, low, high){
    if (low == high){return;}  // Base Case
    mid = (low+high)/2;
    ms_helper(low, mid);
    ms_helper(mid+1, high);
    merge(myArray, low, mid, high);
}
```
void merge(myArray, low, mid, high){
 merged = new int[high-low+1]; // or whatever type is in myArray
 l_next = low;
 r_next = high;
 m_next = 0;
 while (l_next <= mid && r_next <= high){
 if (myArray[l_next] <= myArray[r_next]){
 merged[m_next++] = myArray[l_next++];
 }
 else{
 merged[m_next++] = myArray[r_next++];
 }
 }
 while (l_next <= mid){ merged[m_next++] = myArray[l_next++]; }
 while (r_next <= high){ merged[m_next++] = myArray[r_next++]; }
 for(i=0; i<merged.length; i++){ myArray[i+low] = merged[i];}
}
Analyzing Merge Sort

1. Identify time required to Divide and Combine
2. Identify all subproblems and their sizes
3. Use recurrence relation to express recursive running time
4. Solve and express running time asymptotically

- **Divide**: 0 comparisons
- **Conquer**: recursively sort two lists of size $\frac{n}{2}$
- **Combine**: n comparisons
- **Recurrence**:

 $$T(n) = 0 + T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n$$

 $$T(n) = 2T\left(\frac{n}{2}\right) + n$$
Red box represents a problem instance

Blue value represents time spent at that level of recursion

\[T(n) = 2T\left(\frac{n}{2}\right) + n \]

\(\Rightarrow n \) comparisons / level

\(\log_2 n \) levels of recursion

\[T(n) = \sum_{i=1}^{\log_2 n} n = n \log_2 n \]
Properties of Merge Sort

• Worst Case Running time:
 • $\Theta(n \log n)$

• In-Place?
 • No!

• Adaptive?
 • No!

• Stable?
 • Yes!
 • As long as in a tie you always pick l_next
Quicksort

• Like Mergesort:
 • Divide and conquer
 • $O(n \log n)$ run time (kind of...)

• Unlike Mergesort:
 • Divide step is the “hard” part
 • *Typically* faster than Mergesort
Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- **Divide**: select pivot element p, Partition(p)
- **Conquer**: recursively sort left and right sublists
- **Combine**: Nothing!
Partition (Divide step)

Given: a list, a pivot p

Start: unordered list

| 8 | 5 | 7 | 3 | 12 | 10 | 1 | 2 | 4 | 9 | 6 | 11 |

Goal: All elements $< p$ on left, all $> p$ on right

| 5 | 7 | 3 | 1 | 2 | 4 | 6 | 8 | 12 | 10 | 9 | 11 |
Partition, Procedure

If Begin value < \(p \), move Begin right
Else swap Begin value with End value, move End Left
Done when Begin = End
Partition, Procedure

If \text{Begin} value $< p$, move \text{Begin} right
Else swap \text{Begin} value with \text{End} value, move \text{End} Left
Done when \text{Begin} = \text{End}
Partition, Procedure

If \text{Begin} \text{ value} < p, \text{move} \text{Begin} \text{ right}
Else \text{swap} \text{Begin} \text{ value} \text{with} \text{End} \text{ value}, \text{move} \text{End} \text{ Left}
\text{Done when} \text{Begin} = \text{End}

Case 1: meet at element $< p$
Swap p with pointer position (2 in this case)
Partition, Procedure

If Begin value < p, move Begin right
Else swap Begin value with End value, move End Left
Done when Begin = End

Case 2: meet at element $> p$

Swap p with value to the left (2 in this case)
Partition Summary

1. Put p at beginning of list
2. Put a pointer (Begin) just after p, and a pointer (End) at the end of the list
3. While Begin < End:
 1. If Begin value < p, move Begin right
 2. Else swap Begin value with End value, move End Left
4. If pointers meet at element $< p$: Swap p with pointer position
5. Else If pointers meet at element $> p$: Swap p with value to the left

Run time? $O(n)$
Conquer

Recursively sort Left and Right sublists.

All elements $< p$.

All elements $> p$.

Exactly where it belongs!
Quicksort Run Time (Best)

If the pivot is always the median:

Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$T(n) = O(n \log n)$$
Quicksort Run Time (Worst)

If the pivot is always at the extreme:

\[
T(n) = T(n - 1) + n
\]

Then we shorten by 1 each time

\[
T(n) = O(n^2)
\]
Quicksort Run Time (Worst)

\[T(n) = T(n-1) + n \]

\[T(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \]

\[T(n) = \Theta(n^2) \]
Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

So we shorten by 1 each time

\[T(n) = T(n - 1) + n \]

\[T(n) = O(n^2) \]
Good Pivot

• What makes a good Pivot?
 • Roughly even split between left and right
 • Ideally: median

• There are ways to find the median in linear time, but it’s complicated and slow and you’re better off using mergesort

• In Practice:
 • Pick a random value as a pivot
 • Pick the middle of 3 random values as the pivot
Properties of Quick Sort

• Worst Case Running time:
 • $\Theta(n^2)$
 • But $\Theta(n \log n)$ average! And typically faster than mergesort!

• In-Place?
 •Debatable

• Adaptive?
 • No!

• Stable?
 • No!