CSE 332 Autumn 2023
Lecture 11: B Trees and Hashing

Nathan Brunelle

http://www.cs.uw.edu/332
Next topic: Hash Tables

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Time to insert</th>
<th>Time to find</th>
<th>Time to delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>AVL Tree</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Hash Table (Worst case)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Hash Table (Average)</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
Two Different ideas of “Average”

• Expected Time
 • The expected number of operations a randomly-chosen input uses
 • Assumed randomness from somewhere
 • Most simply: from the input
 • Preferably: from the algorithm/data structure itself
 • $f(n) = \text{sum of the running times for each input of size } n \text{ divided by the number of inputs of size } n$

• Amortized Time
 • The long-term average per-execution cost (in the worst case)
 • Rather than look at the worst case of one execution, look at the total worst case of a sequential chain of many executions
 • Why? The worst case may be guaranteed to be rare
 • $f(n) = \text{the sum of the running times from a sequence of } n \text{ sequential calls to the function divided by } n$
Amortized Example

• ArrayList Insert:
 • Worst case: $\Theta(n)$
Amortized Example

• ArrayList Insert:
 • First 8 inserts: 1 operation each
 • 9th insert: 9 operations
 • Next 7 inserts: 1 operation each
 • 17th insert: 17 operations
 • Next 15 inserts: 1 operation each
 • ...

Do x operations with cost 1
Do 1 operation with cost x
Do x operations with cost 1
Do 1 operation with cost $2x$
Do $2x$ operations with cost 1
Do 1 operation with cost $4x$
Do $4x$ operations with cost 1
Do 1 operation with cost $8x$
...
Amortized: each operation cost 2 operations $\Theta(1)$
Hash Tables

• Motivation:
 • Why not just have a gigantic array?
Hash Tables

• Idea:
 • Have a small array to store information
 • Use a **hash function** to convert the key into an index
 • Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices
 • Store key at the index given by the hash function
 • Do something if two keys map to the same place (should be very rare)
 • Collision resolution
Example

- Key: Phone Number
- Value: People
- Table size: 10
- $h(phone) = \text{number as an integer } \% 10$
- $h(8675309) = 9$
What Influences Running time?
Properties of a “Good” Hash

- Definition: A hash function maps objects to integers

- Should be very efficient
 - Calculating the hash should be negligible

- Should randomly scatter objects
 - Objects that are similar to each other should be likely to end up far away

- Should use the entire table
 - There should not be any indices in the table that nothing can hash to
 - Picking a table size that is prime helps with this

- Should use things needed to “identify” the object
 - Use only fields you would check for a .equals method be included in calculating the hash
 - More fields typically leads to fewer collisions, but less efficient calculation
A Bad Hash (and phone number trivia)

- \(h(phone) \) = the first digit of the phone number
 - No US phone numbers start with 1 or 0
 - If we’re sampling from this class, 2 is by far the most likely
Compare These Hash Functions (for strings)

• Let \(s = s_0s_1s_2 \ldots s_{m-1} \) be a string of length \(m \)

 • Let \(a(s_i) \) be the ascii encoding of the character \(s_i \)

• \(h_1(s) = a(s_0) \)

• \(h_2(s) = (\sum_{i=0}^{m-1} a(s_i)) \)

• \(h_3(s) = (\sum_{i=0}^{m-1} a(s_i) \cdot 37^i) \)
Collision Resolution

• A Collision occurs when we want to insert something into an already-occupied position in the hash table

• 2 main strategies:
 • Separate Chaining
 • Use a secondary data structure to contain the items
 • E.g. each index in the hash table is itself a linked list
 • Open Addressing
 • Use a different spot in the table instead
 • Linear Probing
 • Quadratic Probing
 • Double Hashing
Separate Chaining Insert

To insert k, v:

- Compute the index using $i = h(k) \mod \text{size}$
- Add the key-value pair to the data structure at $\text{table}[i]$
Separate Chaining Find

- **To find k:**
 - Compute the index using $i = h(k) \% \text{size}$
 - Call find with the key on the data structure at $\text{table}[i]$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>k,v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>k,v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Separate Chaining Delete

• To delete k:
 • Compute the index using $i = h(k) \% \text{size}$
 • Call delete with the key on the data structure at $table[i]$
Formal Running Time Analysis

• The **load factor** of a hash table represents the average number of items per “bucket”

 • \(\lambda = \frac{n}{\text{size}} \)

• Assume we have a has table that uses a linked-list for separate chaining

 • What is the expected number of comparisons needed in an unsuccessful find?

 • What is the expected number of comparisons needed in a successful find?

• How can we make the expected running time \(\Theta(1) \)?
Load Factor?
Load Factor?
Load Factor?
Collision Resolution: Linear Probing

- When there’s a collision, use the next open space in the table
Linear Probing: Insert Procedure

• To insert \(k, v \)
 • Calculate \(i = h(k) \% \) size
 • If \(table[i] \) is occupied then try \((i + 1)\% \) size
 • If that is occupied try \((i + 2)\% \) size
 • If that is occupied try \((i + 3)\% \) size
 • ...
Linear Probing: Find

• Let’s do this together!
Linear Probing: Find

• To find key k
 • Calculate $i = h(k) \% \text{size}$
 • If $table[i]$ is occupied and does not contain k then look at $(i + 1) \% \text{size}$
 • If that is occupied and does not contain k then look at $(i + 2) \% \text{size}$
 • If that is occupied and does not contain k then look at $(i + 3) \% \text{size}$
 • Repeat until you either find k or else you reach an empty cell in the table
Linear Probing: Delete

• Let’s do this together!
Linear Probing: Delete

• Let’s do this together!