Section 3: Recurrences and Closed Forms

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Recurrence Function/Relation</th>
<th>General formula</th>
<th>Closed form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Piecewise function that mathematically models the runtime of a recursive algorithm (might want to define constants)</td>
<td>Function written as the number of expansion i and recurrence function (might have a summation)</td>
<td>General formula evaluated without recurrence function or summations (force them to be in terms of constants or n)</td>
</tr>
<tr>
<td>Example</td>
<td>(T(n) = c_1), for (n = 1) (T(n) = T\left(\frac{n}{2}\right) + c_2), otherwise</td>
<td>(T(n) = T\left(\frac{n}{2^i}\right) + i \cdot c_2)</td>
<td>Let (i = \log_2 n), (T(n) = T\left(\frac{n}{\log_2 n}\right) + \log_2 n \cdot c_2) (= T(1) + \log_2 n \cdot c_2) (= c_1 + \log_2 n \cdot c_2)</td>
</tr>
</tbody>
</table>

0. Not to Tree

Consider the function \(f(n) \). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```plaintext
1 f(n) {
2    if (n <= 0) {
3        return 1;
4    }
5    return 2 * f(n - 1) + 1;
6 }
```

a) Find a recurrence \(T(n) \) modeling the worst-case runtime complexity of \(f(n) \)

\[
T(n) = c_0 \quad \text{, if } n \leq 0 \\
T(n) = T(n - 1) + c_1 \quad \text{, otherwise}
\]

b) Find a closed form for \(T(n) \)

Unrolling the recurrence, we get
\[
T(n) = T(n - 1) + c_1 \\
= T(n - 2) + c_1 + c_1 \\
= T(0) + c_1 + \ldots + c_1 \\
= c_0 + c_1 + \ldots + c_1 \\
= c_0 + n \cdot c_1
\]
1. To Tree

Consider the function \(h(n) \). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

\[
h(n) \begin{cases}
2 & \text{if } (n \leq 1) \\
\text{else} & \\
& \text{return } h(n/2) + n + 2^h(n/2)
\end{cases}
\]

a) Find a recurrence \(T(n) \) modeling the worst-case runtime complexity of \(h(n) \)

\[
T(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
2T\left(\frac{n}{2}\right) + c_1 & \text{otherwise}
\end{cases}
\]

b) Find a closed form for \(T(n) \)

The recursion tree has height \(\log(n) \), each non-leaf level \(i \) has work \(c_1 2^i \), and the leaf level has work \(c_0 2^{\log(n)} \). Putting this together, we have:

\[
\sum_{i=0}^{\log(n)-1} c_1 2^i + c_0 2^{\log(n)} = c_1 \left(\sum_{i=0}^{\log(n)-1} 2^i \right) + c_0 n
\]

\[
= c_1 \frac{1-2^{\log(n)}}{1-2} + c_0 n
\]

\[
= c_1 \left(2^{\log(n)} - 1 \right) + c_0 n
\]

\[
= c_1 (n - 1) + c_0 n
\]

\[
= (c_0 + c_1) n - c_1
\]

2. To Tree or Not to Tree

Consider the function \(f(n) \). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

\[
f(n) \begin{cases}
0 & \text{if } (n \leq 1) \\
\text{else} & \\
& \text{int result = f(n/2)} \\
& \text{for } (\text{int } i = 0; i < n; i++) \\
& & \text{result *= 4} \\
& \text{return result + f(n/2)}
\end{cases}
\]
a) Find a recurrence $T(n)$ modeling the worst-case runtime complexity of $f(n)$

We look at the three separate components (base case, non-recursive work, recursive work). The base case is a constant amount of work, because we only do a return statement. We’ll label it c_0. The non-recursive work is a constant amount of work (we’ll call it c_1) for the assignments and if tests and a constant (we’ll call c_2) multiple of n for the loops. The recursive work is $2T\left(\frac{n}{2}\right)$.

Putting these together, we get:

$$
T(n) = \begin{cases}
c_0 & , \text{if } n = 1 \\
2T\left(\frac{n}{2}\right) + c_2 n + c_1 & , \text{otherwise}
\end{cases}
$$

b) Find a closed form for $T(n)$

The recursion tree has $\lg(n)$ height, each non-leaf node of the tree does $c_2 \frac{n}{2} + c_1$ work, each leaf node does c_0 work, and each level has 2^i nodes.

So, the total work is

$$
\sum_{i=0}^{\lg(n)-1} \left(2^i \left(c_1 + c_2 \frac{n}{2^i}\right)\right) + c_0 \cdot 2^{\lg(n)}
$$

$$
= \sum_{i=0}^{\lg(n)-1} 2^i c_1 + c_2 n + c_0 \cdot n
$$

$$
= c_1 \frac{1 - 2^{\lg(n)}}{1 - 2} + c_2 n \lg(n) + c_0 n
$$

$$
= c_1 (n - 1) + c_2 n \lg(n) + c_0 n
$$
3. Big-Oof Bounds

Consider the function \(f(n) \). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```cpp
1  f(n) {
2      if (n == 1) {
3            return 0
4      }
5  }
6  int result = 0
7  for (int i = 0; i < n; i++) {
8      for (int j = 0; j < i; j++) {
9          result += j
10      }
11  }
12  return f(n/2) + result + f(n/2)
13 }
```

a) Find a recurrence \(T(n) \) modeling the worst-case runtime complexity of \(f(n) \)

\[
T(n) = c_0, \quad \text{if } n = 1
\]

\[
T(n) = 2T\left(\frac{n}{2}\right) + c_2 \frac{n(n-2)}{2} + c_1, \quad \text{otherwise}
\]

b) Find a Big-Oh bound for your recurrence.

Since we only want a Big-Oh, we can actually leave off lower-order terms when doing our analysis, as they won’t affect the runtime bounds; so, we can ignore the constants \(c_1 \) and \(c_2 \) in our analysis.

Note that \(\frac{n(n-1)}{2} - \frac{n^2}{2} = \mathcal{O}(n^2) \). We can, again, ignore the lower-order term \(\frac{n^2}{2} \) since we only want a Big-Oh bound.

The recursion tree has \(\lg(n) \) height, each non-leaf node of the tree does \(\left(\frac{n}{2}\right)^2 \) work, each leaf node does \(c_0 \) work, and each level has \(2^i \) nodes.

So, the total work is:

\[
\sum_{i=0}^{\lg(n)-1} \left(\frac{n}{2}\right)^2 + c_0 \cdot 2^i \lg n = n^2 \sum_{i=0}^{\lg(n)-1} \frac{1}{4^i} + c_0 n < n^2 \sum_{i=0}^{\infty} \frac{1}{4^i} + c_0 n = \frac{n^2}{1 - \frac{1}{4}} + c_0 n
\]

This expression is upper-bounded by \(n^2 \) so \(T \in \mathcal{O}(n^2) \).
4. Odds Not in Your Favor

Consider the function \(g(n) \). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```java
1 g(n) {
2     if (n <= 1) {
3         return 1000
4     }
5     if (g(n/3) > 5) {
6         for (int i = 0; i < n; i++) {
7             println("Yay!")
8         }
9         return 5 * g(n/3)
10     } else {
11         for (int i = 0; i < n * n; i++) {
12             println("Yay!")
13         }
14         return 4 * g(n/3)
15     }
16 }
```

a) Find a recurrence \(T(n) \) modeling the worst-case runtime complexity of \(f(n) \)

\[
T(n) = \begin{cases}
 c_0 & \text{if } n \leq 1 \\
 2T\left(\frac{n}{3}\right) + c_1n + c_2 & \text{otherwise}
\end{cases}
\]

b) Find a closed form for \(T(n) \)

The recursion tree has height \(\log_3(n) \), each non-leaf level \(i \) has work \(\left(\frac{c_1}{3^i} + c_2 \right)2^i \), and the leaf level has work \(c_02^{\log_3(n)} \). Putting this together, we have:

\[
\sum_{i=0}^{\log_3(n) - 1} \left(\frac{c_1}{3^i} + c_2 \right)2^i + c_02^{\log_3(n)}
\]

\[
= \sum_{i=0}^{\log_3(n) - 1} \left(\frac{c_1}{3^i} + c_2 \right)2^i + c_02^{\log_3(n)}
\]

\[
= c_1n \left(\sum_{i=0}^{\log_3(n) - 1} \left(\frac{2}{3} \right)^i \right) + c_2 \left(\sum_{i=0}^{\log_3(n) - 1} 2^i \right) + c_02^{\log_3(n)}
\]

Using the finite geometric series,

\[
= c_1n \left(1 - \frac{\left(\frac{2}{3} \right)^{\log_3(n)} - 1}{1 - \frac{2}{3}} \right) + c_2 \left(\frac{2^{\log_3(n)} - 1}{\log_3(2)} \right) + c_02^{\log_3(n)}
\]

\[
= 3c_1n \left(1 - \frac{\left(\frac{2}{3} \right)^{\log_3(n)} - 1}{1 - \frac{2}{3}} \right) + c_2 \left(2^{\log_3(n)} - 1 \right) + c_02^{\log_3(n)}
\]

\[
= 3c_1n \left(1 - \frac{\log_3(n)}{\log_3(2)} \right) + c_2 \left(n^{\log_3(2)} - 1 \right) + c_02^{\log_3(n)}
\]

\[
= 3c_1n - 3c_1n^{\log_3(2)} + c_2n^{\log_3(2)} - c_2 + c_02^{\log_3(n)}
\]

\[
= 3c_1n + (c_0 + c_2 - 3c_1)n^{\log_3(2)} - c_2
\]