
 CSE 332: Data Structures and Parallelism

 Section 7: Parallel Primitives

 0. Parallel Prefix Sum
 Given input array [8, 9, 6, 3, 2, 5, 7, 4] , output an array such that each
 output[i] = sum(array[0], array[1], ..., array[i]) .

 Use the Parallel Prefix Sum algorithm from lecture. Show the intermediate steps. Draw
 the input and output arrays, and for each step, show the tree of the recursive task
 objects that would be created (where a node’s child is for two problems of half the size)
 and the fields each node needs. Do not use a sequential cut-off.

 First pass: fill out the sum field starting from leaf nodes to the top by starting with each leaf node’s value as its
 sum , then combining parallel subproblems by taking the sum of each side. This can be calculated with the
 following expressions:

 leaves[i].sum = input[i]
 p.sum = p.left.sum + p.right.sum

https://homes.cs.washington.edu/~djg/teachingMaterials/spac/sophomoricParallelismAndConcurrency.pdf#page=36

 Second pass: fill out the FL (“from left”) field starting from the top down to the leaf nodes to represent the sum
 of the prefix of this subproblem’s range, that is, the sum of everything to the left of this node. This can
 calculated with the following expressions:

 p.right.FL = p.FL + p.left.sum
 p.left.FL = p.FL

 Then fill the output array with the sum and FL fields at the leaf node level:
 output[i] = leaves[i].FL + input[i]

 1. Parallel Prefix FindMin
 Given input array [8, 9, 6, 3, 2, 5, 7, 4] , output an array such that each
 output[i] = min(array[0], array[1], ..., array[i]) . Show all steps, as
 above.

 First pass: fill out the min field starting from leaf nodes to the top by starting with each leaf node’s value as its
 min , then combining parallel subproblems by taking the min of each side. This can be calculated with the
 following expressions:

 leaves[i].min = input[i]
 p.min = min(p.left.min, p.right.min)

 Second pass: fill out the FL (“from left”) field starting from the top down to the leaf nodes to represent the
 minimum value of the prefix of this subproblem’s range, that is, the min of everything to the left of this node.
 This can calculated with the following expressions:

 p.right.FL = min(p.FL, p.left.min)
 p.left.FL = p.FL

 Then fill the output array with the min and FL fields at the leaf node level:
 output[i] = min(leaves[i].FL, input[i])

 2. Work it Out [the Span]
 a) Define work and span

 Work - how long the running time of a program would be with just one
 processor
 Span - the running time with an infinite number of processors

 b) How do we calculate work and span?

 Work - sum all the work done by each processor
 Span - calculate the longest dependence chain (the longest ’branch’ in the
 parallel ’tree’)

 c) Does adding more processors affect the work or span?

 Neither - both work and span are defined by a fixed number of processors (1
 for work and infinity for
 span) so adding more processors won’t affect them

 3. User Profile
 You are designing a new social-networking site to take over the world. To handle all the
 volume you expect, you want to support multiple threads with a fine-grained locking
 strategy in which each user's profile is protected with a different lock. At the core of your
 system is this simple class definition:

 1 class UserProfile {
 2 static int id_counter;
 3 int id; // unique for each account
 4 int[] friends = new int[9999]; // horrible style
 5 int numFriends;
 6 Image[] embarrassingPhotos = new Image[9999];
 7
 8 UserProfile() { // constructor for new profiles
 9 id = id_counter++;
 10 numFriends = 0;
 11 }
 12
 13 synchronized void makeFriends(UserProfile newFriend) {
 14 synchronized(newFriend) {
 15 if(numFriends == friends.length
 16 || newFriend.numFriends == newFriend.friends.length)
 17 throw new TooManyFriendsException();
 18 friends[numFriends++] = newFriend.id;
 19 newFriend.friends[newFriend.numFriends++] = id;
 20 }
 21 }
 22
 23 synchronized void removeFriend(UserProfile frenemy) {
 24 ...
 25 }
 26 }

 a) The constructor has a concurrency error. What is it and how would you fix it? A
 short English answer is enough - no code or details required.

 There is a data race on id_counter . Two accounts could get the same id if
 they are created simultaneously by different threads. Or even stranger things
 could happen. You could synchronize on a lock for id_counter .

 b) The makeFriends method has a concurrency error. What is it and how would
 you fix it? A short English answer is enough no code or details required.

 There is a potential deadlock if there are two objects obj1 and obj2 and one
 thread calls obj1.makeFriends(obj2) when another thread calls
 obj2.makeFriends(obj1) . The fix is to acquire locks in a consistent order
 based on the id fields, which are unique.

 4. Bubble Tea
 The BubbleTea class manages a bubble tea order assembled by multiple workers.
 Multiple threads could be accessing the same BubbleTea object. Assume the Stack
 objects are thread-safe, have enough space, and operations on them will not throw an
 exception.

 1 public class BubbleTea {
 2 private Stack<String> drink = new Stack<String>();
 3 private Stack<String> toppings = new Stack<String>();
 4 private final int maxDrinkAmount = 8;
 5
 6 // Checks if drink has capacity
 7 public boolean hasCapacity() {
 8 return drink.size() < maxDrinkAmount;
 9 }
 10
 11 // Adds liquid to drink
 12 public void addLiquid(String liquid) {
 13 if (hasCapacity()) {
 14 if (liquid.equals("Milk")) {
 15 while (hasCapacity()) {
 16 drink.push("Milk");
 17 }
 18 } else {
 19 drink.push(liquid);
 20 }
 21 }
 22 }
 23
 24 // Adds newTop to list of toppings to add to drink
 25 public void addTopping(String newTop) {
 26 if (newTop.equals("Boba") || newTop.equals("Tapioca")) {
 27 toppings.push("Bubbles");
 28 } else {
 29 toppings.push(newTop);
 30 }
 31 }
 32 }

 a) Does the BubbleTea class above have (circle all that apply):

 a race condition potential for
 deadlock

 a data race none of these

 If there are any problems, give an example of when those problems could occur.
 Be specific!

 a race condition

 Assuming Stack is thread-safe, a race condition still exists. If two threads
 attempt to call addLiquid() at the same time, they could potentially both
 pass the hasCapacity() test with a value of 7 for drink.size() . Then
 both threads would be free to attempt to push onto the drink stack, exceeding
 maxDrinkAmount . Although this is not a data race, since a thread-safe stack
 can’t be modified from two threads at the same time, it is definitely a bad
 interleaving (because exceeding maxDrinkAmount violates the expected
 behavior of the class).

 b) Suppose we made the addTopping method synchronized, and changed nothing
 else in the code. Does this modified BubbleTea class above have (circle all that
 apply):

 a race condition potential for
 deadlock

 a data race none of these

 If there are any FIXED problems, describe why they are FIXED. If there are any
 NEW problems, give an example of when those problems could occur. Be
 specific!

 a race condition

 Assuming Stack is thread-safe, a race condition still exists as described
 above. This change does reduce the effective concurrency in the code,
 however, so it actually makes things slightly worse.

 5. Phone Monitor
 The PhoneMonitor class tries to help manage how much you use your cell phone
 each day. Multiple threads can access the same PhoneMonitor object. Remember
 that synchronized gives you reentrancy.

 1 public class PhoneMonitor {
 2 private int numMinutes = 0;
 3 private int numAccesses = 0;
 4 private int maxMinutes = 200;
 5 private int maxAccesses = 10;
 6 private boolean phoneOn = true;
 7 private Object accessesLock = new Object();
 8 private Object minutesLock = new Object();
 9
 10 public void accessPhone(int minutes) {
 11 if (phoneOn) {
 12 synchronized (accessesLock) {
 13 synchronized (minutesLock) {
 14 numAccesses++;
 15 numMinutes += minutes;
 16 checkLimits();
 17 }
 18 }
 19 }
 20 }
 21
 22 private void checkLimits() {
 23 synchronized (minutesLock) {
 24 synchronized (accessesLock) {
 25 if (numAccesses >= maxAccesses
 26 || numMinutes >= maxMinutes) {
 27 phoneOn = false;
 28 }
 29 }
 30 }
 31 }
 32 }

 a) Does the PhoneMonitor class as shown above have (circle all that apply):

 a race condition potential for
 deadlock

 a data race none of these

 If there are any problems, give an example of when those problems could occur.
 Be specific!

 a race condition, a data race

 There is a data race on phoneOn . Thread 1 (not needing to hold any locks)
 could be at line 11 reading phoneOn, while Thread 2 is at line 27 (holding both
 of the locks) writing phoneOn . A data race is by definition a type of race
 condition.

 b) Suppose we made the checkLimits method public, and changed nothing else
 in the code. Does this modified PhoneMonitor class have (circle all that apply):

 a race condition potential for
 deadlock

 a data race none of these

 If there are any FIXED problems, describe why they are FIXED. If there are any
 NEW problems, give an example of when those problems could occur. Be
 specific!

 a race condition, potential for deadlock, a data race

 The same data race still exists, and thus so does the race condition. By making
 checkLimits method public, it is possible for Thread 1 to call accessPhone
 and be at line 13 holding the accessesLock lock and trying to get the
 minutesLock lock. Thread 2 could now call checkLimits and be at line 24,
 holding the minutesLock lock and trying to get the accessesLock lock.
 Therefore, now there is also potential for deadlock.

