
 CSE 332: Data Structures and Parallelism 

 Section 3: Recurrences and Closed Forms 

 0. Not to Tree 
 Consider the function  . Find a recurrence modeling the worst-case runtime of this  𝑓  𝑛 ( )
 function and then find a Big-Oh bound for this recurrence. 

 1 f(n) { 
 2     if (n <= 0) { 
 3         return 1; 
 4     } 
 5     return 2 * f(n − 1) + 1; 
 6 } 

 a)  Find a recurrence  modeling the  worst-case runtime complexity  of  𝑇  𝑛 ( )  𝑓  𝑛 ( )

 𝑇  𝑛 ( ) =  𝑐 
 0 

 , if  𝑛 ≤  0 
 𝑇  𝑛 ( ) =  𝑇  𝑛 −  1 ( ) +  𝑐 

 1 
 , otherwise 

 b)  Find a closed form for  𝑇  𝑛 ( )

 Unrolling the recurrence, we get  𝑇  𝑛 ( ) =  𝑐 
 1 

+  𝑐 
 1 

+···+  𝑐 
 1 

+  𝑐 
 0 

=  𝑐 
 1 
 𝑛 +  𝑐 

 0 



 1. To Tree 
 Consider the function  . Find a recurrence modeling the worst-case runtime of this  ℎ  𝑛 ( )
 function and then find a Big-Oh bound for this recurrence. 

 1 h(n) { 
 2     if (n <= 1) { 
 3         return 1 
 4     } else { 
 5         return h(n/2) + n + 2*h(n/2) 
 6     } 
 7 } 

 a)  Find a recurrence  modeling the  worst-case runtime  complexity  of  𝑇  𝑛 ( )  ℎ  𝑛 ( )

 𝑇  𝑛 ( ) =  𝑐 
 0 

 , if  𝑛 ≤  1 

 𝑇  𝑛 ( ) =  2  𝑇  𝑛 
 2 ( ) +  𝑐 

 1 
 , otherwise 

 b)  Find a closed form for  𝑇  𝑛 ( )

 The recursion tree has height  , each non-leaf  level  has work  , and the lg  𝑛 ( )  𝑖  𝑐 
 1 
 2  𝑖 

 leaf level has work  . Putting this  together, we have:  𝑐 
 0 
 2 lg  𝑛 ( )

 𝑖 = 0 

lg  𝑛 ( )− 1 

∑  𝑐 
 1 
 2  𝑖 ( ) +  𝑐 

 0 
 2 lg  𝑛 ( ) =  𝑐 

 1 
 𝑖 = 0 

lg  𝑛 ( )− 1 

∑  2  𝑖 ( ) +  𝑐 
 0 
 𝑛 

=  𝑐 
 1 

 1 − 2 lg  𝑛 ( )

 1 − 2 +  𝑐 
 0 
 𝑛 

=  𝑐 
 1 

 2 lg  𝑛 ( ) −  1 ( ) +  𝑐 
 0 
 𝑛 

=  𝑐 
 1 

 𝑛 −  1 ( ) +  𝑐 
 0 
 𝑛 

=  𝑐 
 0 

+  𝑐 
 1 ( ) 𝑛 −  𝑐 

 1 



 2. To Tree or Not to Tree 
 Consider the function  . Find a recurrence modeling  the worst-case runtime of this  𝑓  𝑛 ( )
 function and then find a Big-Oh bound for this recurrence. 

 1  f(n) { 
 2      if (n <= 1) { 
 3          return 0 
 4      } 
 5      int result = f(n/2) 
 6      for (int i = 0; i < n; i++) { 
 7          result *= 4 
 8      } 
 9      return result + f(n/2) 
 10 } 

 a)  Find a recurrence  modeling the  worst-case runtime  complexity  of  𝑇  𝑛 ( )  𝑓  𝑛 ( )

 We look at the three separate components (base case, non-recursive work, 
 recursive work). The base case is a constant amount of work, because we only 
 do a return statement. We’ll label it  . The  non-recursive work is a constant  𝑐 

 0 
 amount of work (we'll call it  ) for the assignments  and  if  tests and a constant  𝑐 

 1 

 (we'll call  ) multiple of  for the loops.  The recursive work is  .  𝑐 
 2 

 𝑛  2  𝑇  𝑛 
 2 ( )

 Putting these together, we get: 

 𝑇  𝑛 ( ) =  𝑐 
 0 

 , if 1 

 𝑇  𝑛 ( ) =  2  𝑇  𝑛 
 2 ( ) +  𝑐 

 2 
 𝑛 +  𝑐 

 1 
 , otherwise 



 b)  Find a closed form for  𝑇  𝑛 ( )

 The recursion tree has  height, each non-leaf  node of the tree does lg  𝑛 ( )
 work, each leaf node does  work, and each level has  nodes.  𝑐 

 2 
 𝑛 

 2  𝑖 
+  𝑐 

 1 
 𝑐 

 0 
 2  𝑖 

 So, the total work is 

 𝑖 = 0 

lg  𝑛 ( )− 1 

∑  2  𝑖  𝑐 
 1 

+  𝑐 
 2 

 𝑛 

 2  𝑖 ( )( ) +  𝑐 
 0 

·  2 lg  𝑛 ( )

=
 𝑖 = 0 

lg  𝑛 ( )− 1 

∑  2  𝑖  𝑐 
 1 

+  𝑐 
 2 
 𝑛 ( ) +  𝑐 

 0 
·  𝑛 ( )

=  𝑐 
 1 

 1 − 2 lg  𝑛 ( )

 1 − 2 +  𝑐 
 2 
 𝑛 lg  𝑛 ( ) +  𝑐 

 0 
 𝑛 

=  𝑐 
 1 

 𝑛 −  1 ( ) +  𝑐 
 2 
 𝑛 lg  𝑛 ( ) +  𝑐 

 0 
 𝑛 



 3. Big-Oof Bounds 
 Consider the function  . Find a recurrence modeling  the worst-case runtime of this  𝑓  𝑛 ( )
 function and then find a Big-Oh bound for this recurrence. 

 1  f(n) { 
 2      if (n == 1) { 
 3          return 0 
 4      } 
 5 
 6      int result = 0 
 7      for (int i = 0; i < n; i++) { 
 8          for (int j = 0; j < i; j++) { 
 9              result += j 
 10 
 11         } 
 12     } 
 13     return f(n/2) + result + f(n/2) 
 14 } 

 a)  Find a recurrence  modeling the  worst-case runtime  complexity  of  𝑇  𝑛 ( )  𝑓  𝑛 ( )

 𝑇  𝑛 ( ) =  𝑐 
 0 

 , if  𝑛 =  1 

 𝑇  𝑛 ( ) =  2  𝑇  𝑛 
 2 ( ) +  𝑐 

 2 
 𝑛  𝑛 − 2 ( )

 2 +  𝑐 
 1 

 , otherwise 



 b)  Find a Big-Oh bound for your recurrence. 

 Since we only want a Big-Oh, we can actually leave off lower-order terms when 
 doing our analysis, as they won’t affect the runtime bounds; so, we can ignore 
 the constants  and  in our analysis.  𝑐 

 1 
 𝑐 

 2 

 Note that  .  We can, again, ignore the lower-order  𝑛  𝑛 − 1 ( )
 2 =  𝑛  2 

 2 −  𝑛 
 2 ∈  𝒪  𝑛  2 ( )

 term (  ) since we only want a Big-Oh bound.  𝑛 
 2 

 The recursion tree has  height, each non-leaf  node of the tree does lg  𝑛 ( )  𝑛 

 2  𝑖 ( ) 2 

 work, each leaf node does  work, and each level  has  nodes.  𝑐 
 0 

 2  𝑖 

 So, the total work is: 

 𝑖 = 0 

lg  𝑛 ( )− 1 

∑  2  𝑖  𝑛 

 2  𝑖 ( ) 2 

+  𝑐 
 0 

·  2 lg 𝑛 =  𝑛  2 

 𝑖 = 0 

lg  𝑛 ( )− 1 

∑  2  𝑖 

 4  𝑖 
+  𝑐 

 0 
 𝑛 <  𝑛  2 

 𝑖 = 0 

∞

∑  1 

 2  𝑖 
+  𝑐 

 0 
 𝑛 =  𝑛  2 

 1 −  1 
 2 

+  𝑐 
 0 
 𝑛 

 This expression is upper-bounded by  so  .  𝑛  2  𝑇 ∈  𝒪  𝑛  2 ( )



 4. Odds Not in Your Favor 
 Consider the function  . Find a recurrence modeling  the worst-case runtime of this  𝑔  𝑛 ( )
 function and then find a Big-Oh bound for this recurrence. 

 1  g(n) { 
 2      if (n <= 1) { 
 3         return 1000 
 4      } 
 5      if (g(n/3) > 5) { 
 6          for (int i = 0; i < n; i++) { 
 7              println("Yay!") 
 8          } 
 9          return 5 * g(n/3) 
 10     } else { 
 11         for (int i = 0; i < n * n; i++) { 
 12             println("Yay!") 
 13         } 
 14         return 4 * g(n/3) 
 15     } 
 16 } 

 a)  Find a recurrence  modeling the  worst-case runtime  complexity  of  𝑇  𝑛 ( )  𝑓  𝑛 ( )

 𝑇  𝑛 ( ) =  𝑐 
 0 

 , if  𝑛 ≤  1 

 𝑇  𝑛 ( ) =  2  𝑇  𝑛 
 3 ( ) +  𝑐 

 1 
 𝑛 +  𝑐 

 2 
 , otherwise 



 b)  Find a closed form for  𝑇  𝑛 ( )

 The recursion tree has height  , each non-leaf  level  has work log
 3 

 𝑛 ( )  𝑖 

 , and the leaf level  has work  . Putting this together,  we 
 𝑐 

 1 
 𝑛 

 3  𝑖 
+  𝑐 

 2 ( ) 2  𝑖  𝑐 
 0 
 2 

log
 3 

 𝑛 ( )

 have: 

 𝑖 = 0 

log
 3 

 𝑛 ( )− 1 

∑
 𝑐 

 1 
 𝑛 

 3  𝑖 
+  𝑐 

 2 ( ) 2  𝑖 ( ) +  𝑐 
 0 
 2 

log
 3 

 𝑛 ( )

=
 𝑖 = 0 

log
 3 

 𝑛 ( )− 1 

∑
 𝑐 

 1 
 𝑛  2  𝑖 

 3  𝑖 
+  𝑐 

 2 
 2  𝑖 ( ) +  𝑐 

 0 
 2 

log
 3 

 𝑛 ( )

=  𝑐 
 1 
 𝑛 

 𝑖 = 0 

log
 3 

 𝑛 ( )− 1 

∑  2 
 3 ( ) 𝑖 ( ) +  𝑐 

 2 
 𝑖 = 0 

log
 3 

 𝑛 ( )− 1 

∑  2  𝑖 ( ) +  𝑐 
 0 
 2 

log
 3 

 𝑛 ( )

 Using the finite geometric series, 

=  𝑐 
 1 
 𝑛 

 1 −  2 
 3 ( )log

 3 
 𝑛 ( )

 1 −  2 
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( ) +  𝑐 
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 1 − 2 
log

 3 
 𝑛 ( )

 1 − 2 ( ) +  𝑐 
 0 
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log
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=  3  𝑐 
 1 
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 3 ( )log
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log
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