
 CSE 332: Data Structures and Parallelism

 Section 3: Recurrences and Closed Forms

 0. Not to Tree
 Consider the function . Find a recurrence modeling the worst-case runtime of this 𝑓 𝑛 ()
 function and then find a Big-Oh bound for this recurrence.

 1 f(n) {
 2 if (n <= 0) {
 3 return 1;
 4 }
 5 return 2 * f(n − 1) + 1;
 6 }

 a) Find a recurrence modeling the worst-case runtime complexity of 𝑇 𝑛 () 𝑓 𝑛 ()

 𝑇 𝑛 () = 𝑐
 0

 , if 𝑛 ≤ 0
 𝑇 𝑛 () = 𝑇 𝑛 − 1 () + 𝑐

 1
 , otherwise

 b) Find a closed form for 𝑇 𝑛 ()

 Unrolling the recurrence, we get 𝑇 𝑛 () = 𝑐
 1

+ 𝑐
 1

+···+ 𝑐
 1

+ 𝑐
 0

= 𝑐
 1
 𝑛 + 𝑐

 0

 1. To Tree
 Consider the function . Find a recurrence modeling the worst-case runtime of this ℎ 𝑛 ()
 function and then find a Big-Oh bound for this recurrence.

 1 h(n) {
 2 if (n <= 1) {
 3 return 1
 4 } else {
 5 return h(n/2) + n + 2*h(n/2)
 6 }
 7 }

 a) Find a recurrence modeling the worst-case runtime complexity of 𝑇 𝑛 () ℎ 𝑛 ()

 𝑇 𝑛 () = 𝑐
 0

 , if 𝑛 ≤ 1

 𝑇 𝑛 () = 2 𝑇 𝑛
 2 () + 𝑐

 1
 , otherwise

 b) Find a closed form for 𝑇 𝑛 ()

 The recursion tree has height , each non-leaf level has work , and the lg 𝑛 () 𝑖 𝑐
 1
 2 𝑖

 leaf level has work . Putting this together, we have: 𝑐
 0
 2 lg 𝑛 ()

 𝑖 = 0

lg 𝑛 ()− 1

∑ 𝑐
 1
 2 𝑖 () + 𝑐

 0
 2 lg 𝑛 () = 𝑐

 1
 𝑖 = 0

lg 𝑛 ()− 1

∑ 2 𝑖 () + 𝑐
 0
 𝑛

= 𝑐
 1

 1 − 2 lg 𝑛 ()

 1 − 2 + 𝑐
 0
 𝑛

= 𝑐
 1

 2 lg 𝑛 () − 1 () + 𝑐
 0
 𝑛

= 𝑐
 1

 𝑛 − 1 () + 𝑐
 0
 𝑛

= 𝑐
 0

+ 𝑐
 1 () 𝑛 − 𝑐

 1

 2. To Tree or Not to Tree
 Consider the function . Find a recurrence modeling the worst-case runtime of this 𝑓 𝑛 ()
 function and then find a Big-Oh bound for this recurrence.

 1 f(n) {
 2 if (n <= 1) {
 3 return 0
 4 }
 5 int result = f(n/2)
 6 for (int i = 0; i < n; i++) {
 7 result *= 4
 8 }
 9 return result + f(n/2)
 10 }

 a) Find a recurrence modeling the worst-case runtime complexity of 𝑇 𝑛 () 𝑓 𝑛 ()

 We look at the three separate components (base case, non-recursive work,
 recursive work). The base case is a constant amount of work, because we only
 do a return statement. We’ll label it . The non-recursive work is a constant 𝑐

 0
 amount of work (we'll call it) for the assignments and if tests and a constant 𝑐

 1

 (we'll call) multiple of for the loops. The recursive work is . 𝑐
 2

 𝑛 2 𝑇 𝑛
 2 ()

 Putting these together, we get:

 𝑇 𝑛 () = 𝑐
 0

 , if 1

 𝑇 𝑛 () = 2 𝑇 𝑛
 2 () + 𝑐

 2
 𝑛 + 𝑐

 1
 , otherwise

 b) Find a closed form for 𝑇 𝑛 ()

 The recursion tree has height, each non-leaf node of the tree does lg 𝑛 ()
 work, each leaf node does work, and each level has nodes. 𝑐

 2
 𝑛

 2 𝑖
+ 𝑐

 1
 𝑐

 0
 2 𝑖

 So, the total work is

 𝑖 = 0

lg 𝑛 ()− 1

∑ 2 𝑖 𝑐
 1

+ 𝑐
 2

 𝑛

 2 𝑖 ()() + 𝑐
 0

· 2 lg 𝑛 ()

=
 𝑖 = 0

lg 𝑛 ()− 1

∑ 2 𝑖 𝑐
 1

+ 𝑐
 2
 𝑛 () + 𝑐

 0
· 𝑛 ()

= 𝑐
 1

 1 − 2 lg 𝑛 ()

 1 − 2 + 𝑐
 2
 𝑛 lg 𝑛 () + 𝑐

 0
 𝑛

= 𝑐
 1

 𝑛 − 1 () + 𝑐
 2
 𝑛 lg 𝑛 () + 𝑐

 0
 𝑛

 3. Big-Oof Bounds
 Consider the function . Find a recurrence modeling the worst-case runtime of this 𝑓 𝑛 ()
 function and then find a Big-Oh bound for this recurrence.

 1 f(n) {
 2 if (n == 1) {
 3 return 0
 4 }
 5
 6 int result = 0
 7 for (int i = 0; i < n; i++) {
 8 for (int j = 0; j < i; j++) {
 9 result += j
 10
 11 }
 12 }
 13 return f(n/2) + result + f(n/2)
 14 }

 a) Find a recurrence modeling the worst-case runtime complexity of 𝑇 𝑛 () 𝑓 𝑛 ()

 𝑇 𝑛 () = 𝑐
 0

 , if 𝑛 = 1

 𝑇 𝑛 () = 2 𝑇 𝑛
 2 () + 𝑐

 2
 𝑛 𝑛 − 2 ()

 2 + 𝑐
 1

 , otherwise

 b) Find a Big-Oh bound for your recurrence.

 Since we only want a Big-Oh, we can actually leave off lower-order terms when
 doing our analysis, as they won’t affect the runtime bounds; so, we can ignore
 the constants and in our analysis. 𝑐

 1
 𝑐

 2

 Note that . We can, again, ignore the lower-order 𝑛 𝑛 − 1 ()
 2 = 𝑛 2

 2 − 𝑛
 2 ∈ 𝒪 𝑛 2 ()

 term () since we only want a Big-Oh bound. 𝑛
 2

 The recursion tree has height, each non-leaf node of the tree does lg 𝑛 () 𝑛

 2 𝑖 () 2

 work, each leaf node does work, and each level has nodes. 𝑐
 0

 2 𝑖

 So, the total work is:

 𝑖 = 0

lg 𝑛 ()− 1

∑ 2 𝑖 𝑛

 2 𝑖 () 2

+ 𝑐
 0

· 2 lg 𝑛 = 𝑛 2

 𝑖 = 0

lg 𝑛 ()− 1

∑ 2 𝑖

 4 𝑖
+ 𝑐

 0
 𝑛 < 𝑛 2

 𝑖 = 0

∞

∑ 1

 2 𝑖
+ 𝑐

 0
 𝑛 = 𝑛 2

 1 − 1
 2

+ 𝑐
 0
 𝑛

 This expression is upper-bounded by so . 𝑛 2 𝑇 ∈ 𝒪 𝑛 2 ()

 4. Odds Not in Your Favor
 Consider the function . Find a recurrence modeling the worst-case runtime of this 𝑔 𝑛 ()
 function and then find a Big-Oh bound for this recurrence.

 1 g(n) {
 2 if (n <= 1) {
 3 return 1000
 4 }
 5 if (g(n/3) > 5) {
 6 for (int i = 0; i < n; i++) {
 7 println("Yay!")
 8 }
 9 return 5 * g(n/3)
 10 } else {
 11 for (int i = 0; i < n * n; i++) {
 12 println("Yay!")
 13 }
 14 return 4 * g(n/3)
 15 }
 16 }

 a) Find a recurrence modeling the worst-case runtime complexity of 𝑇 𝑛 () 𝑓 𝑛 ()

 𝑇 𝑛 () = 𝑐
 0

 , if 𝑛 ≤ 1

 𝑇 𝑛 () = 2 𝑇 𝑛
 3 () + 𝑐

 1
 𝑛 + 𝑐

 2
 , otherwise

 b) Find a closed form for 𝑇 𝑛 ()

 The recursion tree has height , each non-leaf level has work log
 3

 𝑛 () 𝑖

 , and the leaf level has work . Putting this together, we
 𝑐

 1
 𝑛

 3 𝑖
+ 𝑐

 2 () 2 𝑖 𝑐
 0
 2

log
 3

 𝑛 ()

 have:

 𝑖 = 0

log
 3

 𝑛 ()− 1

∑
 𝑐

 1
 𝑛

 3 𝑖
+ 𝑐

 2 () 2 𝑖 () + 𝑐
 0
 2

log
 3

 𝑛 ()

=
 𝑖 = 0

log
 3

 𝑛 ()− 1

∑
 𝑐

 1
 𝑛 2 𝑖

 3 𝑖
+ 𝑐

 2
 2 𝑖 () + 𝑐

 0
 2

log
 3

 𝑛 ()

= 𝑐
 1
 𝑛

 𝑖 = 0

log
 3

 𝑛 ()− 1

∑ 2
 3 () 𝑖 () + 𝑐

 2
 𝑖 = 0

log
 3

 𝑛 ()− 1

∑ 2 𝑖 () + 𝑐
 0
 2

log
 3

 𝑛 ()

 Using the finite geometric series,

= 𝑐
 1
 𝑛

 1 − 2
 3 ()log

 3
 𝑛 ()

 1 − 2
 3

() + 𝑐
 2

 1 − 2
log

 3
 𝑛 ()

 1 − 2 () + 𝑐
 0
 2

log
 3

 𝑛 ()

= 3 𝑐
 1
 𝑛 1 − 2

 3 ()log
 3

 𝑛 ()() + 𝑐
 2

 2
log

 3
 𝑛 ()

− 1 () + 𝑐
 0
 2

log
 3

 𝑛 ()

= 3 𝑐
 1
 𝑛 1 − 𝑛

log
 3

 2 ()

 𝑛 () + 𝑐
 2

 𝑛
log

 3
 2 ()

− 1 () + 𝑐
 0
 𝑛

log
 3

 2 ()

= 3 𝑐
 1
 𝑛 − 3 𝑐

 1
 𝑛

log
 3

 2 ()
+ 𝑐

 2
 𝑛

log
 3

 2 ()
− 𝑐

 2
+ 𝑐

 0
 𝑛

log
 3

 2 ()

= 3 𝑐
 1
 𝑛 + 𝑐

 0
+ 𝑐

 2
− 3 𝑐

 1 () 𝑛
log

 3
 2 ()

− 𝑐
 2

