
CSE 332: Data Structures and Parallelism

Section 2: Heaps and Asymptotics

Definition of Big-Oh:

Suppose , are two functions,𝑓: ℕ → ℝ 𝑔: ℕ → ℝ
𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) ≡ ∃

𝑐∈ℝ
>0

, 𝑛
0
∈ℕ

∀
𝑛∈ℕ≥𝑛

0

𝑓(𝑛) ≤ 𝑐 · 𝑔(𝑛)

Definition of Big-Omega:

Suppose , are two functions,𝑓: ℕ → ℝ 𝑔: ℕ → ℝ
𝑓(𝑛) ∈ Ω(𝑔(𝑛)) ≡ ∃

𝑐∈ℝ
>0

, 𝑛
0
∈ℕ

∀
𝑛∈ℕ≥𝑛

0

𝑓(𝑛) ≥ 𝑐 · 𝑔(𝑛)

Definition of Big-Theta:

Suppose , are two functions,𝑓: ℕ → ℝ 𝑔: ℕ → ℝ
𝑓(𝑛) ∈ Θ(𝑔(𝑛))
≡ 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) ∧ 𝑓(𝑛) ∈ Ω(𝑔(𝑛))
≡ ∃

𝑐
0
∈ℝ

>0
, 𝑛

0
∈ℕ

∀
𝑛∈ℕ≥𝑛

0

𝑓(𝑛) ≤ 𝑐
0

· 𝑔(𝑛) ∧ ∃
𝑐

1
∈ℝ

>0
, 𝑛

1
∈ℕ

∀
𝑛∈ℕ≥𝑛

1

𝑓(𝑛) ≥ 𝑐
1

· 𝑔(𝑛)

0. Big-Oh Proofs
For each of the following, prove that :𝑓(𝑛) ∈ 𝒪(𝑔)

a) 𝑓(𝑛) = 7𝑛 𝑔(𝑛) = 𝑛
10

We are trying to prove that .7𝑛 ∈ 𝒪( 𝑛
10 )

Let be arbitrary and let and .𝑛 ∈ ℕ ≥ 𝑛
0

𝑐 = 70 𝑛
0

= 1
We start with a true statement:
7𝑛 ≤ 7𝑛
7𝑛 ≤ 70 · 𝑛

10

7𝑛 ≤ 𝑐 · 𝑛
10

As such, by the definition of Big-Oh, 7𝑛 ∈ 𝒪( 𝑛
10 )



b) 𝑓(𝑛) = 1000 𝑔(𝑛) = 3𝑛3

We are trying to prove that .1000 ∈ 𝒪(3𝑛3)
Let be arbitrary and let and .𝑛 ∈ ℕ ≥ 𝑛

0
𝑐 = 1 𝑛

0
= 1000

We start with a true statement:
1000 ≤ 1 · 𝑛
1000 ≤ 1 · 𝑛2

1000 ≤ 1 · 𝑛3

1000 ≤ 1 · 3𝑛3

1000 ≤ 𝑐 · 3𝑛3

As such, by the definition of Big-Oh, 1000 ∈ 𝒪(3𝑛3)

c) 𝑓(𝑛) = 7𝑛2 + 3𝑛 𝑔(𝑛) = 𝑛4

We are trying to prove that .7𝑛2 + 3𝑛 ∈ 𝒪(𝑛4)
Let be arbitrary and let and .𝑛 ∈ ℕ ≥ 𝑛

0
𝑐 = 14 𝑛

0
= 1

We start with a true statement:
14𝑛4 ≤ 14𝑛4

7𝑛4 + 7𝑛4 ≤ 14 · 𝑛4

7𝑛4 + 3𝑛4 ≤ 14 · 𝑛4

7𝑛2 + 3𝑛 ≤ 14 · 𝑛4

As such, by the definition of Big-Oh, 7𝑛2 + 3𝑛 ∈ 𝒪(𝑛4)

d) 𝑓(𝑛) = 𝑛 + 2𝑛 lg 𝑛 𝑔(𝑛) = 𝑛 lg 𝑛

We are trying to prove that .𝑛 + 2𝑛 lg 𝑛 ∈ 𝒪(𝑛 lg 𝑛)
Let be arbitrary and let and .𝑛 ∈ ℕ ≥ 𝑛

0
𝑐 = 3 𝑛

0
= 2

We start with a true statement:
𝑛 + 2𝑛 lg 𝑛 ≤ 𝑛 + 2𝑛 lg 𝑛
𝑛 + 2𝑛 lg 𝑛 ≤ 𝑛 lg 𝑛 + 2𝑛 lg 𝑛
𝑛 + 2𝑛 lg 𝑛 ≤ 3 · 𝑛 lg 𝑛
As such, by the definition of Big-Oh, 𝑛 + 2𝑛 lg 𝑛 ∈ 𝒪(𝑛 lg 𝑛)



1. Is Your Program Running? Better Catch It!
For each of the following, determine the tight bound for the worst-case runtime inΘ(·)
terms of the free variables of the code snippets.

a)

1 int x = 0

2 for (int i = n; i >= 0; i−−) {
3     if ((i % 3) == 0) {

4         break

5     }

6     else {

7         x += n

8     }

9 }

This is because exactly one of , , orΘ(1) 𝑛 𝑛 − 1
will be divisible by 3 for all possible values of𝑛 − 2

. So, the loop runs at most 3 times.𝑛

b)

1 int x = 0

2 for (int i = 0; i < n; i++) {

3     for (int j = 0; j < (n * n / 3); j++) {

4         x += j

5     }

6 }

We can model the worst-case runtime as

. This simplifies to:
𝑖=0

𝑛−1

∑  
𝑗=0

𝑛2/3−1

∑ 1

. So, the
𝑖=0

𝑛−1

∑  
𝑗=0

𝑛2/3−1

∑ 1 =
𝑖=0

𝑛−1

∑ 𝑛2

3 = 𝑛( 𝑛3

3 ) = 𝑛3

3

worst-case runtime is .Θ(𝑛3)

c)

1 int x = 0

2 for (int i = 0; i < n; i++) {

3     for (int j = 0; j < i; j++) {

4     x += j

5     }

6 }

We can model the worst-case runtime as
𝑖=0

𝑛−1

∑  
𝑗=0

𝑖−1

∑ 1

which simplifies to . So, the
𝑖=0

𝑛−1

∑ 𝑖 = ( 𝑛(𝑛−1)
2 )

worst-case runtime is .Θ(𝑛2)



d)

1  int x = 0

2  for (int i = 0; i < n; i++) {

3      if (n < 100000) {

4          for (int j = 0; j < i * i * n; j++) {

5              x += 1

6          }

7      } else {

8          x += 1

9      }

10 }

Recall that when computing the asymptotic
complexity, we only care about the behavior as the
input goes to infinity. Once is large enough, we will𝑛
only execute the second branch of the if statement,
which means the runtime of the code can be

modeled as . So, the worst-case runtime is
𝑖=0

𝑛−1

∑ 1 = 𝑛

.Θ(𝑛)

e)

1  int x = 0

2  for (int i = 0; i < n; i++) {

3      if (i % 5 == 0) {

4          for (int j = 0; j < n; j++) {

5              if (i == j) {

6                  for (int k = 0; k < n; k++) {

7                      x += i * j * k

8                  }

9              }

10         }

11     }

12 }

We know the runtime of the outermost loop is ,
𝑖=0

𝑛−1

∑ ?

where is the (currently unknown) runtime of the?
middle and innermost loops. We also know the

middle loop by itself has a runtime of and runs
𝑗=0

𝑛−1

∑ ?

only a fifth of the time. Therefore, we can refine our

model to
𝑖=0

𝑛−1

∑ 1
5 (

𝑗=0

𝑛−1

∑ ?).

Now, note that the innermost if statement is true
exactly only once per each iteration of the middle
loop. So, we can refine our model of the runtime to

which simplifies to
𝑖=0

𝑛−1

∑ 1
5 (

𝑗=0

𝑛−1

∑ 1 +
𝑘=0

𝑛−1

∑ 1)

. Therefore, the worst-case asymptotic
𝑖=0

𝑛−1

∑ 2𝑛
5 = 2𝑛2

5

runtime will be .Θ(𝑛2)



2. Asymptotics Analysis
Consider the following method which finds the number of unique Strings within a given
array of length .𝑛

1  int numUnique(String[] values) {

2      boolean[] visited = new boolean[values.length]

3      for (int i = 0; i < values.length; i++) {

4          visited[i] = false

5      }

6      int out = 0

7      for (int i = 0; i < values.length; i++) {

8          if (!visited[i]) {

9              out += 1

10             for (int j = i; j < values.length; j++) {

11                 if (values[i].equals(values[j])) {

12                     visited[j] = true

13                 }

14             }

15         }

16     }

17     return out;

18 }

Determine the tight , , and bounds of each function below. If there is no𝒪(·) Ω(·) Θ(·) Θ(·)
bound, explain why. Start by (1) constructing an equation that models each function
then (2) simplifying and finding a closed form.

a) the worst-case runtime of numUnique𝑓(𝑛) =

In the worst case, the array will contain entirely unique strings and so must run
the inner loop times.𝑛

So, which means ,𝑓(𝑛) =
𝑖=0

𝑛−1

∑ 1 +
𝑖=0

𝑛−1

∑
𝑗=𝑖

𝑛−1

∑ 1 = 𝑛 + 𝑛(𝑛+1)
2 𝑓(𝑛) ∈ 𝒪(𝑛2)

, and .𝑓(𝑛) ∈ Ω(𝑛2) 𝑓(𝑛) ∈ Θ(𝑛2)



b) the best-case runtime of numUnique𝑔(𝑛) =

In the best case, the array will contain the exact same string repeated times,𝑛
causing the inner loop to run only once.

So, which means ,𝑔(𝑛) =
𝑖=0

𝑛−1

∑ 1 +
𝑖=0

𝑛−1

∑ 1 +
𝑗=0

𝑛−1

∑ 1 = 3𝑛 𝑔(𝑛) ∈ 𝒪(𝑛) 𝑔(𝑛) ∈ Ω(𝑛)

, and .𝑔(𝑛) ∈ Θ(𝑛)

c) the amount of memory used by numUnique (the space complexity)ℎ(𝑛) =

numUnique will create a boolean array of length and allocate a few extra𝑛
variables, which take up a constant and therefore negligible amount of memory
So, (where is some constant) which means ,ℎ(𝑛) = 𝑛 + 𝑘 𝑘 ℎ(𝑛) ∈ 𝒪(𝑛)

, and .ℎ(𝑛) ∈ Ω(𝑛) ℎ(𝑛) ∈ Θ(𝑛)



3. Oh Snap!
For each question below, explain what’s wrong with the provided answer. The problem
might be the reasoning, the conclusion, or both!

a) Determine the tight bound worst-case runtime of the following piece of code:Θ(·)

1  public static int waddup(int n) {

2      if (n > 10000) {

3          return n

4      } else {

5          for (int i = 0; i < n; i++) {

6              System.out.println("It's dat boi!")

7          }

8          return 0

9      }

10 }

Bad answer: The runtime of this function is , because when searching for𝒪(𝑛)
an upper bound, we always analyze the code branch with the highest runtime.
We see the first branch is , but the second branch is .𝒪(1) 𝒪(𝑛)

The tightest upper bound is , not . Picking the code branch with the𝒪(1) 𝒪(𝑛)
highest runtime is not necessarily the correct thing to do – instead, we must
consider what the runtime is as the input grows towards infinity.

In this case, we can see the first branch will be executed for when ,𝑛 > 10000
so we consider only that branch when computing the asymptotic complexity.



b) Determine the tight bound worst-case runtime of the following piece of code:Θ(·)

1  public static void trick(int n) {

2      for (int i = 1; i < Math.pow(2, n); i *= 2) {

3          for (int j = 0; j < n; j++) {

4              System.out.println("(" + i + "," + j + ")")

5          }

6      }

7  }

Bad answer: The runtime of this function is , because the outer loop is𝒪(𝑛2)
conditioned on an expression with and so is the inner loop.𝑛

While the runtime is , the explanation is incorrect. In particular, it glosses𝒪(𝑛2)
over the fact that we are iterating from to in the outer loop.0 2𝑛 − 1

A more precise explanation should explain that while the outer loop terminates
when , we are also multiplying by 2 per each iteration. This means the𝑖 = 2𝑛 𝑖
outer loop does iterations, which is just equivalent to .lg(2𝑛) 𝑛

The inner loop does iterations, so we conclude the overall runtime is
𝑗=0

𝑛−1

∑ 1 = 𝑛

.𝒪(𝑛2)



4. Look Before You Heap
a) Insert 10, 7, 15, 17, 12, 20, 6, 32 into a min heap.

b) Now, insert the same values into a max heap.



c) Now, insert 10, 7, 15, 17, 12, 20, 6, 32 into a min heap, but use Floyd’s
buildHeap algorithm.

d) Insert 1, 0, 1, 1, 0 into a min heap.



5. My God!𝒪

Prove that . Use the definition of Big-Omega above.4𝑛2 + 𝑛5 ∈ Ω(𝑛)

Scratch Work:
Prove that .4𝑛2 + 𝑛5 ∈ Ω(𝑛)
Same as .∃

𝑐∈ℝ
>0

, 𝑛
0
∈ℕ

∀
𝑛∈ℕ≥𝑛

0

4𝑛2 + 𝑛5 ≥ 𝑐 · 𝑛

We want to find a and .𝑐 𝑛
0

From here, we can do a technique called "demotion" where we observe that:
when𝑛2 ≥ 𝑛 𝑛 ≥ 1
when𝑛5 ≥ 𝑛 𝑛 ≥ 1

From this, we can "demote" the LHS:
4𝑛2 + 𝑛5 ≥ 4𝑛 + 𝑛
= 5𝑛
We can observe here that this matches the formatting of the RHS where .𝑐 = 5
Hence, we found the values and (from before where we observe the promotion):𝑐 𝑛

0
,𝑐 = 5 𝑛

0
= 1

Now that we have this scratch work, we can work on our solution proof. Right now,
this scratch work has backwards reasoning (bad!), so we need to reverse the order so
we DO NOT start with the claim we wanted to prove ( ) and DO NOT end with4𝑛2 + 𝑛5

a true statement ( ).𝑛

On to the solution!

Solution:
We are trying to prove that .4𝑛2 + 𝑛5 ∈ Ω(𝑛)
Let be arbitrary and let and .𝑛 ∈ ℕ ≥ 𝑛

0
𝑐 = 5 𝑛

0
= 1

We start with a true statement:
4𝑛2 + 𝑛5 ≥ 4𝑛 + 𝑛
4𝑛2 + 𝑛5 ≥ 5𝑛
4𝑛2 + 𝑛5 ≥ 𝑐 · 𝑛
As such, by the definition of Big-Omega, .4𝑛2 + 𝑛5 ∈ Ω(𝑛)


