
CSE 332: Data Structures and Parallelism

Section 1: WorkLists
WorkList ADT

add(work) Notifies the worklist that it must handle work

peek() Returns the next item to work on

next() Removes and returns the next item to work on

hasWork() Returns true if there's any work left and false otherwise

0. Odd Jobs
For each of the following scenarios, choose

(1) an ADT: Stack or Queue

(2) a data structure: Array, LinkedList with front, or LinkedList with front and back

and give a reason for each decision.

WorkList Situations

(a) You're designing a tool that checks code to verify that all opening brackets,
braces, parentheses, … have closing counterparts.

Stack
We want to match the most recent bracket we’ve seen first so we want LIFO properties.

Array or LinkedList with front
Stacks push and pop on the same end, there is no need to complicate the data structure by
using a LinkedList with front and back

Technically, the Array will have slightly better performance due to cache locality but this is
not very important asymptotically



(b) Disneyland has hired you to find a way to improve the processing efficiency of
their long lines at attractions. There is no way to forecast how long the lines will
be.

Queue
We're dealing with a line that wants FIFO properties

Array and LinkedList with front and back
The Array implementation will work if we implement it as a CircularArrayFIFOQueue (will be
talked about later)

The LinkedList with front and back will technically be better since we don't have to resize

There is no way to make the LinkedList with front work; either adding or removing from
the Queue will be slow.

(c) A sandwich shop wants to serve customers in the order that they arrived, but
also wants to look ahead to know what people have ordered (ej. 2nd person, 3rd
person, ..., last person in line).

Queue
Same as before, we're dealing with a line that wants FIFO properties

Array
We need to access both ends of the data structure but also want to know what someone has
ordered at a specific index

1. Trie to Delete 0's and 1's?
Suppose we inserted all possible binary strings of length 0-3 (ej. 1, 0, 10, ..., 110, 111)
into a Trie.

(a) If we deleted all binary numbers of length 2, how many nodes would we have to
delete?

0 nodes

We still need the nodes storing the value for binary strings of length 2 because they have
pointers to the nodes for binary strings of length 3, which still exist in the Trie. Therefore,
we only set the value to null in the node to remove the key-value pair from the Trie.



(b) After part a, if we deleted all binary numbers of length 3, how many nodes would
we have to delete?

12 nodes

Since the binary strings of length 3 are all leaf nodes, they do not have any pointers to other
relevant nodes in the Trie, so we can delete them, which is 8 nodes. However, in part a, the
nodes that used to store the binary strings of length 2 are now empty, they do not store any
values, so we can delete those as well, which is 4 nodes for a total of 12 nodes deleted.

2. Call Me Maybe
(a) Suppose you want to transfer someone’s phone book to a data structure so that

you can call all the phone numbers with a particular area code efficiently. What
data structure would you use? How would you implement it?

One way to solve this would be using a HashMap where the keys are the area codes and the
values are a list of corresponding phone numbers. We will need to parse the phone number
to get the first three numbers.

Another way to solve this is by using a Trie. We would use the entire phone number as the
“route” and insert all numbers into the Trie. Then, to find all the phone numbers to call, we
would use the area code to partially travel down the Trie, then visit all children nodes to find
the phone numbers to print.

(b) What is the time complexity of your solution?

If we compare the HashMap and TrieMap approaches, both will have the same runtime
efficiency.

If we let be the total number of phone numbers and be the expected number of phone𝑛 𝑒
numbers per area code, we can find that it takes time to build either the HashMap or theΘ(𝑛)
Trie. Likewise, given some area code, it takes time to visit and call each phoneΘ(𝑒)
number.

Initially, it may seem like the Trie would be slower due to the traversals. However, recall
that the depth of the Trie is always equal to the length of a phone number, which is a
constant value.



(c) What is the space complexity?

Asymptotically, the Trie will be more space-efficient in the average case.

The reason why the Trie turns out to be more space-efficient on average is because the
Trie is capable of storing near-duplicate phone numbers in less space then the HashMap. If
we have the phone numbers 123-456-7890, 123-456-7891, and 123-456-7892, the
map must store each number individually whereas the Trie is able to combine them
together and only branch for the very last number.

However, in practice, because each of the Trie nodes stores a pointer to the next node, it
can quickly add up and take up a lot of memory.



3. Let’s Trie to be Old School
Text on nine keys (T9)’s objective is to make it easier to type text messages with 9 keys.
It allows words to be entered by a single keypress for each letter in which several letters
are associated with each key. It combines the groups of letters on each phone key with
a fast-access dictionary of words. It looks up in the dictionary all words corresponding to
the sequence of keypresses and orders them by frequency of use. So for example, the
input ’2665’ could be the words {book, cook, cool}. Describe how you would
implement a T9 dictionary for a mobile phone.

T9 Example

One way to implement this would be by using a Trie. The routes (branches) are
represented by the digits and the node’s values are a collection of words. So if you
typed in 2, 6, 6, 5, you would choose the child representing 2, then 6, then 6, then 5,
traveling four layers deep into the Trie.

Then, that child node’s value would contain a collection of all dictionary words
corresponding to this particular sequence of numbers.

To populate the Trie, you would iterate through each word in the dictionary, and first
convert the word into the appropriate sequence of numbers.

Then, you would use that sequence as the key or “route” to traverse the Trie and
add the word.


