
 CSE 332: Data Structures and Parallelism

 Section 7: Parallel Primitives & Concurrency Solutions

 0. Parallel Prefix Sum
 Given input array [8, 9, 6, 3, 2, 5, 7, 4] , output an array such that each
 output[i] = sum(array[0], array[1], ..., array[i]) .

 Use the Parallel Prefix Sum algorithm from lecture. Show the intermediate steps. Draw
 the input and output arrays, and for each step, show the tree of the recursive task
 objects that would be created (where a node’s child is for two problems of half the size)
 and the fields each node needs. Do not use a sequential cut-off.

https://homes.cs.washington.edu/~djg/teachingMaterials/spac/sophomoricParallelismAndConcurrency.pdf#page=36

 1. Parallel Prefix FindMin
 Given input array [8, 9, 6, 3, 2, 5, 7, 4] , output an array such that each
 output[i] = min(array[0], array[1], ..., array[i]) . Show all steps, as
 above.

 2. Work it Out [the Span]
 a) Define work and span

 b) How do we calculate work and span?

 c) Does adding more processors affect the work or span?

 3. User Profile
 You are designing a new social-networking site to take over the world. To handle all the
 volume you expect, you want to support multiple threads with a fine-grained locking
 strategy in which each user's profile is protected with a different lock. At the core of your
 system is this simple class definition:

 1 class UserProfile {
 2 static int id_counter;
 3 int id; // unique for each account
 4 int[] friends = new int[9999]; // horrible style
 5 int numFriends;
 6 Image[] embarrassingPhotos = new Image[9999];
 7
 8 UserProfile() { // constructor for new profiles
 9 id = id_counter++;
 10 numFriends = 0;
 11 }
 12
 13 synchronized void makeFriends(UserProfile newFriend) {
 14 synchronized(newFriend) {
 15 if(numFriends == friends.length
 16 || newFriend.numFriends == newFriend.friends.length)
 17 throw new TooManyFriendsException();
 18 friends[numFriends++] = newFriend.id;
 19 newFriend.friends[newFriend.numFriends++] = id;
 20 }
 21 }
 22
 23 synchronized void removeFriend(UserProfile frenemy) {
 24 ...
 25 }
 26 }

 a) The constructor has a concurrency error. What is it and how would you fix it? A
 short English answer is enough - no code or details required.

 b) The makeFriends method has a concurrency error. What is it and how would
 you fix it? A short English answer is enough no code or details required.

 4. Bubble Tea
 The BubbleTea class manages a bubble tea order assembled by multiple workers.
 Multiple threads could be accessing the same BubbleTea object. Assume the Stack
 objects are thread-safe, have enough space, and operations on them will not throw an
 exception.

 1 public class BubbleTea {
 2 private Stack<String> drink = new Stack<String>();
 3 private Stack<String> toppings = new Stack<String>();
 4 private final int maxDrinkAmount = 8;
 5
 6 // Checks if drink has capacity
 7 public boolean hasCapacity() {
 8 return drink.size() < maxDrinkAmount;
 9 }
 10
 11 // Adds liquid to drink
 12 public void addLiquid(String liquid) {
 13 if (hasCapacity()) {
 14 if (liquid.equals("Milk")) {
 15 while (hasCapacity()) {
 16 drink.push("Milk");
 17 }
 18 } else {
 19 drink.push(liquid);
 20 }
 21 }
 22 }
 23
 24 // Adds newTop to list of toppings to add to drink
 25 public void addTopping(String newTop) {
 26 if (newTop.equals("Boba") || newTop.equals("Tapioca")) {
 27 toppings.push("Bubbles");
 28 } else {
 29 toppings.push(newTop);
 30 }
 31 }
 32 }

 a) Does the BubbleTea class above have (circle all that apply):

 a race condition potential for
 deadlock

 a data race none of these

 If there are any problems, give an example of when those problems could occur.
 Be specific!

 b) Suppose we made the addTopping method synchronized, and changed nothing
 else in the code. Does this modified BubbleTea class above have (circle all that
 apply):

 a race condition potential for
 deadlock

 a data race none of these

 If there are any FIXED problems, describe why they are FIXED. If there are any
 NEW problems, give an example of when those problems could occur. Be
 specific!

 5. Phone Monitor
 The PhoneMonitor class tries to help manage how much you use your cell phone
 each day. Multiple threads can access the same PhoneMonitor object. Remember
 that synchronized gives you reentrancy.

 1 public class PhoneMonitor {
 2 private int numMinutes = 0;
 3 private int numAccesses = 0;
 4 private int maxMinutes = 200;
 5 private int maxAccesses = 10;
 6 private boolean phoneOn = true;
 7 private Object accessesLock = new Object();
 8 private Object minutesLock = new Object();
 9
 10 public void accessPhone(int minutes) {
 11 if (phoneOn) {
 12 synchronized (accessesLock) {
 13 synchronized (minutesLock) {
 14 numAccesses++;
 15 numMinutes += minutes;
 16 checkLimits();
 17 }
 18 }
 19 }
 20 }
 21
 22 private void checkLimits() {
 23 synchronized (minutesLock) {
 24 synchronized (accessesLock) {
 25 if (numAccesses >= maxAccesses
 26 || numMinutes >= maxMinutes) {
 27 phoneOn = false;
 28 }
 29 }
 30 }
 31 }
 32 }

 a) Does the PhoneMonitor class as shown above have (circle all that apply):

 a race condition potential for
 deadlock

 a data race none of these

 If there are any problems, give an example of when those problems could occur.
 Be specific!

 b) Suppose we made the checkLimits method public, and changed nothing else
 in the code. Does this modified PhoneMonitor class have (circle all that apply):

 a race condition potential for
 deadlock

 a data race none of these

 If there are any FIXED problems, describe why they are FIXED. If there are any
 NEW problems, give an example of when those problems could occur. Be
 specific!

