
CSE 332: Data Structures & Parallelism
Lecture 21: MST

Hans Easton
Summer 2022

8/12/2022 1



Announcements

• Final Review Session: MOR 220 Wed 10/17 from 3:00-4:00pm
• There might be snacks, so definitely come through 😎

8/12/2022 2



Outline for Today

• Intro to MST
• Prim’s algorithm
• Kruskal’s algorithm

8/12/2022 3



Time travel – 1920s

It’s the 1920’s. Your friend works at an electric company. They want to know 
where to build electrical wires to connect all cities to the powerplant. 

They know how much it would cost to lay electric wires between any pair of 
locations, and they want the cheapest way to make sure there’s electricity from 
the plant to every city.



Time travel – 1950s

It’s the 1950’s. Your friend works at a phone company. They want to know where 
to build phone wires to connect phones to each other. 

They know how much it would cost to lay phone wires between any pair of 
locations, and they want the cheapest way to make sure everyone can call 
everyone else.



Time travel – 2020s

It’s 2022! Your friend works at an internet company. They want to know where to 
build internet cables to connect all cities to the Internet. 

They know much it would cost to lay internet cables between any pair of 
locations, and they want the cheapest way to make sure everyone can reach the 
server.



What are we looking for?

A set of edges such that…

1. Every vertex touches at least one edge

2. Graph on these edges is connected

3. Sum of edge weights is minimized

Claim: The set of edges we pick never has a cycle

8/12/2022 7



Aside: Tree!

1. Don’t need a root 

2. Varying numbers of children

3. Connected and no cycles 

8/12/2022 8

Tree (when talking about undirected graphs)
An undirected, connected acyclic graph.



MST Problem

A set of edges such that…

1. Edges span the graph

2. Graph on these edges is connected

3. Sum of edge weights is minimized

4. Contains no cycle

8/12/2022 9

Minimum Spanning Tree Problem
Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such 
that you can get from any vertex of G to any 
other on only those edges.

We need a 
minimum 
spanning
tree



Prim’s Algorithm

• Choose arbitrary starting point

• Add a new edge to the result each step

• How to choose the new edge?

• Will let you reach more vertices

• Is as light as possible

8/10/2022 10



Try it out Prim’s travelling strategy as a broke college student!

1. research neighboring cities (update table)

2. decide on the cheapest city to travel to

3. travel to that city (mark graph)!

8/12/2022 11

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2
Vertex Dist. Best Edge Processed

A
B
C
D
E
F
G



Try it out Prim’s travelling strategy as a broke college student!

1. research neighboring cities (update table)

2. decide on the cheapest city to travel to

3. travel to that city (mark graph)!

8/12/2022 12

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2 Vertex Dist. Best Edge Processed

A -- -- Yes
B 2 (A,B) Yes
C 4 (A,C) Yes
D 7 2 (A,D)(C,D) Yes
E 6 5 (B,E)(C,E) Yes
F 3 (B,F) Yes
G 50 (B,G) Yes



Pseudocode

8/12/2022 13

initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
foreach(edge (source, v) )

v.dist = w(source,v)
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
add u.bestEdge to spanning tree
foreach(edge (u,v) leaving u){

if(w(u,v) < v.dist){
v.dist = w(u,v)
v.bestEdge = (u,v)

}
}

mark u as processed
}

Dijkstra’s: keep track the minimum distance from
the starting vertex to vertex v

Prim: keep track of the weight of the minimum 
single edge connecting vertex v to everything else 
that’s already been connected



Does Prim’s Algorithm Always Work?

• Prim’s Algorithm is a greedy algorithm

• Always select the best option available at the moment

• Once it decides to include an edge in the MST, it never reconsiders its 
decision

• Life lesson? Be greedy!
• Always thinking about global optimum might stress you out
• Instead, make the best decision everyday and hope for the best!
• The information provided on this page does not, and is not intended to, constitute 

professional advice. When in doubt, stop being greedy.

8/12/2022 14



A different Approach

• Prim’s algorithm - vertex by vertex

• What if you think edge by edge instead?

• Start from the lightest edge
• add it if it connects new things to each other 
• don’t add it if it would create a cycle

• This is Kruskal’s Algorithm

8/12/2022 15



Kruskal’s Algorithm

8/12/2022 16

KruskalMST(Graph G) 
initialize each vertex to be a connected component

sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same 

component
}

}



Try It Out

A

B

D F

E

C

3 6
2

1

4
5

8

9
10

7

Edge Include? Reason

(A,C)

(C,E)

(A,B)

(A,D)

(C,D)

Edge Include? Reason

(B,F)

(D,E)

(D,F)

(E,F)

(C,F)

Two simple steps:
1. If edge connects different clouds

then add edge, combine clouds

2. Otherwise, ignore



Kruskal’s Algorithm: Running Time

8/12/2022 18

KruskalMST(Graph G) 
initialize each vertex to be a connected component

sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same 

component
}

}



Union-Find
Union-Find ADT

makeSet(x) – creates a new set where the only 
member (and the representative) is x.

state

behavior

Set of Sets
- Disjoint: No element appears in multiple sets
- No required order
- Each set has representative

findSet(x) – looks up the set containing 
element x, returns name of that set
union(x, y) – combines sets named x and y. 
Picks new name for combined set.



Union-Find Running Time

8/12/2022 20

What’s important for us? 

Amortized running times! We care about the total time across the entire set 
of unions and finds, not the running time of just one.

Operation Amortized Non-amortized
MakeSet() Θ(1) Θ(1)
Union() 𝑂(log∗ 𝑛) 𝑂(log 𝑛)
Find() 𝑂(log∗ 𝑛) 𝑂(log 𝑛)



log * n

8/12/2022 21

log∗ 𝑛 : the number of times you need to apply log() to get a number at most 1.

E.g. log∗(16) = 3

log 16 = 4 log 4 = 2 log 2 = 1.

log∗ 𝑛 grows ridiculously slowly. 

log∗ 10"# = 5.

For all practical purposes, log∗ 𝑛 operations are constant time



Using Union-Find

8/12/2022 22

Have each disjoint set represent a connected component 

When you add an edge, you union those connected components.

How do you know if two vertices belong to the same component?



Kruskal’s with Union Find

8/12/2022 23

KruskalMST(Graph G) 
initialize each vertex to be a connected 

component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(find(u) != find(v)){
add (u,v) to the MST
union(find(u),find(v)) }

}



Full circle

8/12/2022 24

Let’s time travel again!



Time travel (again) – 1920s

It’s the 1920’s. Your friend works at an electric company. They want to know 
where to build electrical wires to connect all cities to the powerplant. 

They know how much it would cost to lay electric wires between any pair of 
locations, and they want the cheapest way to make sure there’s electricity from 
the plant to every city.



Time travel (again) – 1950s

It’s the 1950’s. Your friend works at a phone company. They want to know where 
to build phone wires to connect phones to each other. 

They know how much it would cost to lay phone wires between any pair of 
locations, and they want the cheapest way to make sure everyone can call 
everyone else.



Time travel (again) – 2020s

It’s 2022! You work at an internet company. They want to know where to build 
internet cables to connect all cities to the Internet. Maybe you will come up with
the next MST algorithm! 



A Graph of Trees

• Recall a tree is an undirected, connected, and acyclic graph.

• How would we describe the graph Kruskal’s builds?

• It’s not a tree until the end.

It’s a forest!

8/12/2022 28

Forest
any undirected and acyclic graph



EVERY TREE IS A FOREST.


