The Algorithm

[N

. Foreach node v, set v.cost = «© and v.known
. Set source.cost = 0

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
¢) Foreach edge (v,u) with weight w, if u is unknown,

cl = v.cost + w// costof best path through v to u
c2 = u.cost // costof best path to u previously known

if (el < c2) { // if the path through v is better
u.cost = cl
u.path = v // for computing actual paths

}

N

false

Example #1

known? cost path

I O M oOolOo|l®@

15

16

Example #2

vertex | known? cost

path

@ mm oo

27

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

» Notice each edge is processed only once

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while (not all nodes are known) {
b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G
if ('a.known)
if(b.cost + weight((b,a)) < a.cost){
a.cost b.cost + weight((b,a))
a.path b
}

44




Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while (heap is not empty) {
b = deleteMin()
b.known = true
for each edge (b,a) in G
if ('a.known)
if(b.cost + weight((b,a)) < a.cost){
decreaseKey (a,“new cost - old cost”)
a.path = b
}

48

48




