The Algorithm

1. For each node \mathbf{v}, set \mathbf{v}.cost $=\infty$ and \mathbf{v}. known $=$ false
2. Set source. cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node \mathbf{v} with lowest cost
b) Mark vas known
c) For each edge (\mathbf{v}, \mathbf{u}) with weight \mathbf{w}, if \mathbf{u} is unknown,
$\mathrm{c} 1=\mathrm{v}$. cost $+\mathrm{w} / /$ cost of best path through v to u
if ($\mathrm{c} 1<\mathrm{c} 2$) $\{/ /$ if the path through v is better
u.cost $=\mathrm{c} 1$
u .path $=\mathrm{v} / /$ for computing actual paths
\}

Example \#1

8/10/2022
16

Example \#2

Order Added to Known Set:

\square

Efficiency, first approach

Use pseudocode to determine asymptotic run-time - Notice each edge is processed only once
dijkstra (Graph G, Node start)
for each node: x.cost=infinity, x.known=false tart.cost = 0
while(not all nodes are known)
b $=$ find unknown node with smallest cost
b. known = true
for each edge (b, a) in G
if(!a.known)
if (b.cost + weight((b,a)) < a.cost)
a.cost $=b \cdot \operatorname{cost}+$ weight ($(b, a))$
a. path $=b$
\}
\}
8/10/2022

Efficiency, second approach

Use pseudocode to determine asymptotic run-time
dijkstra(Graph G, Node start) {
dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
for each node: x.cost=infinity, x.known=false
start.cost = 0
start.cost = 0
build-heap with all nodes
build-heap with all nodes
while(heap is not empty)
while(heap is not empty)
known = true
known = true
for each edge
for each edge
for each edge (b,a) in G
for each edge (b,a) in G
if(b.cost +
if(b.cost +
(b.cost + weight((b,a)) < a.cost) {
(b.cost + weight((b,a)) < a.cost) {
a.path = b
a.path = b
}
}
,
8/10/2022

