
The Algorithm

1. For each node v, set  v.cost = ¥ and v.known = false
2. Set source.cost = 0
3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (v,u) with weight w, if u is unknown,

c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2){ // if the path through v is better
u.cost = c1
u.path = v // for computing actual paths

}
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Example #1
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Example #2
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Efficiency, first approach
Use pseudocode to determine asymptotic run-time

• Notice each edge is processed only once
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dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while(not all nodes are known) {

b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G
if(!a.known)

if(b.cost + weight((b,a)) < a.cost){
a.cost = b.cost + weight((b,a))
a.path = b

}
}
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Efficiency, second approach
Use pseudocode to determine asymptotic run-time
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dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while(heap is not empty) {

b = deleteMin()
b.known = true
for each edge (b,a) in G
if(!a.known)
if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)
a.path = b

}
}
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