
The Algorithm

1. For each node v, set v.cost = ¥ and v.known = false
2. Set source.cost = 0
3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (v,u) with weight w, if u is unknown,

c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2){ // if the path through v is better
u.cost = c1
u.path = v // for computing actual paths

}

8/10/2022 15

15

Example #1

16

A B

D
C

F H

E

G

0 2 2 3

110 2
3

111

7

1
9

2

4

vertex known? cost path

A

B

C

D

E

F

G

H

5

Order Added to Known Set:

8/10/2022

16

Example #2

A B

C
D

F

E

G

0 �

�

�

�
�

�

2

1
2

vertex known? cost path

A 0

B

C

D

E

F

G

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

8/10/2022 27

27

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

• Notice each edge is processed only once

8/10/2022 44

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while(not all nodes are known) {

b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G
if(!a.known)

if(b.cost + weight((b,a)) < a.cost){
a.cost = b.cost + weight((b,a))
a.path = b

}
}

44

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

48

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while(heap is not empty) {

b = deleteMin()
b.known = true
for each edge (b,a) in G
if(!a.known)
if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)
a.path = b

}
}

488/10/2022

48

