
CSE 332: Data Structures & Parallelism
Lecture 20: Shortest Paths

Arthur Liu
Summer 2022

8/10/2022 1

Announcements

• End of quarter is coming up!!
• Unfortunately, this also means there is not a lot of flexibility since

grades are due
• EX16 cancelled!

• Last day of OH is on Wed 10/17

• Hans will be giving the Friday lecture on MST!

8/10/2022 2

Announcements

• Reminder your final is on two days, Section 10/18, Lecture 10/19
• Make sure to be in your correct quiz section on Thursday for pt1. of the

exam! We will take attendance, so bring student ID to section

• Final Review Session: MOR 220 Wed 10/17 from 3:00-4:00pm
• Exam Topics and Practice Exams on the website!
• Make sure to look at some past finals to practice!

8/10/2022 3

Outline for Today

• Dijkstra’s Algorithm

8/10/2022 4

Shortest Path Applications

• Network routing
• Driving directions
• Cheap flight tickets
• Critical paths in project management

(see textbook)
• …

Single source shortest paths

• Done: BFS to find the minimum path length from s to t in O(|E|+|V|)

• Actually, we found the minimum path length from s to every node
• Still O(|E|+(|V|)
• No faster way for a “distinguished” destination in the worst-case

• Now: Weighted graphs

Given a weighted graph and node s,
find the minimum-cost path from s to every node

• As before, asymptotically no harder than for one destination
• Unlike before, BFS will not work

8/10/2022 6

Not as easy

Why BFS won’t work: Shortest path may not have the fewest edges
• Annoying when this happens with costs of flights

500

100
100 100

100

We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles
• Today’s algorithm is wrong if edges can be negative

7

10 5

-11

8/10/2022 7

Dijkstra’s Algorithm

• Named after its inventor Edsger Dijkstra (1930-2002)
• Truly one of the “founders” of computer science;

1972 Turing Award; this is just one of his many contributions
• Sample quotation: “computer science is no more about computers than

astronomy is about telescopes”

• The idea: reminiscent of BFS, but adapted to handle weights
• Grow the set of nodes whose shortest distance has been computed
• Nodes not in the set will have a “best distance so far”
• A priority queue will turn out to be useful for efficiency

8/10/2022 8

Dijkstra’s Intuition

At each step, process the next closest vertex to our start.

8/10/2022 9

Start

A

B

3

5

2

Without trying other paths to A,
why do we know that the shortest
path to A must be a total of cost 3?

Dijkstra’s Intuition

At each step, process the next closest vertex to our start.

8/10/2022 10

Start

A

B

3

5

??

Without trying other paths to A,
why do we still know that the
shortest path to A must be a total
of cost 3?

Dijkstra’s Intuition

At each step, process the next closest vertex to our start.

8/10/2022 11

Start

A

B

3

5

Without trying other paths to A, why do
we still, still know that the shortest path
to A must be a total of cost 3?

Can we make the claim that the shortest
path to B must be 5?

??

??

Dijkstra’s Intuition

At each step, process the next closest vertex to our start.

8/10/2022 12

Start

A

B

3

1

What if the weights were different?
Do we still know that the shortest
path to A costs 3?

??

??

Dijkstra’s Intuition

At each step, process the next closest vertex to our start, which we
know must be the shortest possible distance to that node.

Rinse and repeat.

8/10/2022 13

Start

A

B

3

5

??

D

C

??

??

1

0.5

The Algorithm

1. For each node v, set v.cost = ¥ and v.known = false
2. Set source.cost = 0
3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (v,u) with weight w, if u is unknown,

c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2){ // if the path through v is better
u.cost = c1
u.path = v // for computing actual paths

}

8/10/2022 15

Example #1

16

A B

D
C

F H

E

G

0 2 2 3

110 2
3

111

7

1
9

2

4

vertex known? cost path

A

B

C

D

E

F

G

H

5

Order Added to Known Set:

8/10/2022

Example #1

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1
9
2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G, E

8/10/2022 24

Interpreting the Results
• Now that we’re done, how do we get the path from, say, A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1
9

2

4 5
vertex known? cost path

A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

A, C, B, D, F, H, G, E

8/10/2022 25

Stopping Short
• How would this have worked differently if we were only interested in:
• The path from A to G?
• The path from A to D?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1
9

2

4 5
vertex known? cost path

A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

A, C, B, D, F, H, G, E

8/10/2022 26

Example #2

A B

C
D

F

E

G

0 �

�

�

�
�

�

2

1
2

vertex known? cost path
A 0
B
C
D
E
F
G

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

8/10/2022 27

Example #2

A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D, C, E, B, F, G

8/10/2022 35

Features

• When a vertex is marked known,
the cost of the shortest path to that node is known
• The path is also known by following back-pointers

• While a vertex is still not known,
another shorter path to it might still be found
• The current cost we have is an upper-bound though!

Note: The “Order Added to Known Set” is not important
• A detail about how the algorithm works (client doesn’t care)
• Not used by the algorithm (implementation doesn’t care)
• It is sorted by path-cost, resolving ties in some way

8/10/2022 38

A Greedy Algorithm

• Dijkstra’s algorithm
• For single-source shortest paths in a weighted graph (directed or

undirected) with no negative-weight edges

• An example of a greedy algorithm:
• At each step, irrevocably does what seems best at that step

• A locally optimal step, not necessarily globally optimal
• Once a vertex is known, it is not revisited

• Turns out to be globally optimal

8/10/2022 39

When greed fails us

Making change – use fewest # of coins possible for 15¢

25, 10, 5, 1

25, 12, 10, 5, 1

8/10/2022 40

Where are we?

• What should we do after learning an algorithm?
• Prove it is correct

• Not obvious!
• We will sketch the key ideas

• Analyze its efficiency
• Will do better by using a data structure we learned earlier!

8/10/2022 41

Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path
• True initially: shortest path to start node has cost 0
• If it stays true every time we mark a node “known”, then by induction

this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t
discover a shorter path later!
• This holds only because Dijkstra’s algorithm picks the node with the

next shortest path-so-far
• The proof is by contradiction…

8/10/2022 42

Correctness: The Cloud (Rough Idea)

8/10/2022 43

The Known
Cloud

v Next shortest path from
inside the known cloud

w

Better path to
v? No!

Source

Suppose v is the next node to be marked known (“added to the cloud”)
• The best-known path to v must have only nodes “in the cloud”

– Since we’ve selected it, and we only know about paths through the cloud to a node right
outside the cloud

• Assume (for contradiction) the actual shortest path to v is different
– It won’t use only cloud nodes, (or we would know about it), so it must use non-cloud nodes
– Let w be the first non-cloud node on this path.
– The part of the path up to w is already known and must be shorter than the best-known path

to v. So v would not have been picked.
Contradiction!

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

• Notice each edge is processed only once

8/10/2022 44

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while(not all nodes are known) {

b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G
if(!a.known)

if(b.cost + weight((b,a)) < a.cost){
a.cost = b.cost + weight((b,a))
a.path = b

}
}

Improving asymptotic running time

• So far: O(|V|2+ |E|)

• We had a similar “problem” with topological sort being O(|V|2+ |E|)
due to each iteration looking for the node to process next
• We solved it with a queue of zero-degree nodes
• But here we need the lowest-cost node and costs can change as we process

edges

• Solution?

8/10/2022 46

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

48

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while(heap is not empty) {

b = deleteMin()
b.known = true
for each edge (b,a) in G
if(!a.known)
if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)
a.path = b

}
}

488/10/2022

Dense vs. sparse again

First approach: O(|V|2+ |E|)
Second approach: O(|V|log|V|+|E|log|V|)

So which is better?

8/10/2022 50

Dense vs. sparse again

First approach: O(|V|2+ |E|) or: O(|V|2)
Second approach: O(|V|log|V|+|E|log|V|)

So which is better?
Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|))
Dense: O(|V|2+ |E|) , or: O(|V|2)

But, remember these are worst-case and asymptotic
Priority queue might have slightly worse constant factors
On the other hand, for “normal graphs”, we might call decreaseKey rarely
(or not percolate far), making |E|log|V| more like |E|

8/10/2022 51

v3

v6

v1

v2 v4

v5

v0s

1

2

2

2
1

1 1

5 3

5

6

10

V Known Dist
from s

Path

v0
v1
v2
v3
v4
v5
v6

Find the shortest
path to each vertex
from v0

Order declared Known:

528/10/2022

