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Announcements

• End of quarter is coming up!!
• Unfortunately, this also means there is not a lot of flexibility since 

grades are due
• EX16 cancelled!

• Last day of OH is on Wed 10/17

• Hans will be giving the Friday lecture on MST!
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Announcements

• Reminder your final is on two days, Section 10/18, Lecture 10/19
• Make sure to be in your correct quiz section on Thursday for pt1. of the 

exam! We will take attendance, so bring student ID to section

• Final Review Session: MOR 220 Wed 10/17 from 3:00-4:00pm
• Exam Topics and Practice Exams on the website!
• Make sure to look at some past finals to practice!
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Outline for Today

• Dijkstra’s Algorithm
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Shortest Path Applications

• Network routing
• Driving directions
• Cheap flight tickets
• Critical paths in project management

(see textbook)
• …



Single source shortest paths

• Done: BFS to find the minimum path length from s to t in O(|E|+|V|)

• Actually, we found the minimum path length from s to every node
• Still O(|E|+(|V|)
• No faster way for a “distinguished” destination in the worst-case

• Now:  Weighted graphs 

Given a weighted graph and node s, 
find the minimum-cost path from s to every node 

• As before, asymptotically no harder than for one destination
• Unlike before, BFS will not work
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Not as easy

Why BFS won’t work: Shortest path may not have the fewest edges
• Annoying when this happens with costs of flights
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We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles
• Today’s algorithm is wrong if edges can be negative
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Dijkstra’s Algorithm

• Named after its inventor Edsger Dijkstra (1930-2002)
• Truly one of the “founders” of computer science; 

1972 Turing Award; this is just one of his many contributions
• Sample quotation: “computer science is no more about computers than 

astronomy is about telescopes”

• The idea: reminiscent of BFS, but adapted to handle weights
• Grow the set of nodes whose shortest distance has been computed
• Nodes not in the set will have a “best distance so far”
• A priority queue will turn out to be useful for efficiency
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Dijkstra’s Intuition

At each step, process the next closest vertex to our start.
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Dijkstra’s Intuition

At each step, process the next closest vertex to our start.
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Dijkstra’s Intuition

At each step, process the next closest vertex to our start.
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Dijkstra’s Intuition

At each step, process the next closest vertex to our start.
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Dijkstra’s Intuition

At each step, process the next closest vertex to our start, which we 
know must be the shortest possible distance to that node.

Rinse and repeat.

8/10/2022 13

Start

A

B

3

5

??

D

C

??

??

1

0.5



The Algorithm

1. For each node v, set  v.cost = ¥ and v.known = false
2. Set source.cost = 0
3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (v,u) with weight w, if u is unknown,

c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2){ // if the path through v is better
u.cost = c1
u.path = v // for computing actual paths

}
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Example #1
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Example #1
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F H

E
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9
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4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G, E
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Interpreting the Results
• Now that we’re done, how do we get the path from, say, A to E?
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vertex known? cost path

A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

A, C, B, D, F, H, G, E
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Stopping Short
• How would this have worked differently if we were only interested in:
• The path from A to G?
• The path from A to D?
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vertex known? cost path

A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

A, C, B, D, F, H, G, E
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Example #2

A B

C
D

F

E

G

0 �

�

�

�
�

�

2

1
2

vertex known? cost path
A 0
B
C
D
E
F
G

5

1
1

1

2 6
5 3

10

Order Added to Known Set:
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Example #2
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vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

5

1
1
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5 3
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Order Added to Known Set:

A, D, C, E, B, F, G
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Features

• When a vertex is marked known, 
the cost of the shortest path to that node is known
• The path is also known by following back-pointers

• While a vertex is still not known, 
another shorter path to it might still be found
• The current cost we have is an upper-bound though!

Note: The “Order Added to Known Set” is not important
• A detail about how the algorithm works (client doesn’t care)
• Not used by the algorithm (implementation doesn’t care)
• It is sorted by path-cost, resolving ties in some way
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A Greedy Algorithm

• Dijkstra’s algorithm
• For single-source shortest paths in a weighted graph (directed or 

undirected) with no negative-weight edges

• An example of a greedy algorithm: 
• At each step, irrevocably does what seems best at that step

• A locally optimal step, not necessarily globally optimal
• Once a vertex is known, it is not revisited

• Turns out to be globally optimal
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When greed fails us

Making change – use fewest # of coins possible for 15¢

25, 10, 5, 1

25, 12, 10, 5, 1
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Where are we?

• What should we do after learning an algorithm?
• Prove it is correct

• Not obvious!
• We will sketch the key ideas

• Analyze its efficiency
• Will do better by using a data structure we learned earlier!
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Correctness: Intuition

Rough intuition: 

All the “known” vertices have the correct shortest path
• True initially: shortest path to start node has cost 0
• If it stays true every time we mark a node “known”, then by induction 

this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t 
discover a shorter path later!
• This holds only because Dijkstra’s algorithm picks the node with the 

next shortest path-so-far
• The proof is by contradiction…
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Correctness: The Cloud (Rough Idea)
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The Known 
Cloud

v Next shortest path from 
inside the known cloud

w

Better path to 
v?  No!

Source

Suppose v is the next node to be marked known (“added to the cloud”)
• The best-known path to v must have only nodes “in the cloud”

– Since we’ve selected it, and we only know about paths through the cloud to a node right 
outside the cloud

• Assume (for contradiction) the actual shortest path to v is different
– It won’t use only cloud nodes, (or we would know about it), so it must use non-cloud nodes
– Let w be the first non-cloud node on this path.  
– The part of the path up to w is already known and must be shorter than the best-known path 

to v.  So v would not have been picked.  
Contradiction!



Efficiency, first approach
Use pseudocode to determine asymptotic run-time

• Notice each edge is processed only once

8/10/2022 44

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while(not all nodes are known) {

b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G
if(!a.known)

if(b.cost + weight((b,a)) < a.cost){
a.cost = b.cost + weight((b,a))
a.path = b

}
}



Improving asymptotic running time

• So far: O(|V|2+ |E|)

• We had a similar “problem” with topological sort being O(|V|2+ |E|)
due to each iteration looking for the node to process next
• We solved it with a queue of zero-degree nodes
• But here we need the lowest-cost node and costs can change as we process 

edges

• Solution?
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Efficiency, second approach
Use pseudocode to determine asymptotic run-time

48

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while(heap is not empty) {

b = deleteMin()
b.known = true
for each edge (b,a) in G
if(!a.known)
if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)
a.path = b

}
}
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Dense vs. sparse again

First approach: O(|V|2+ |E|)
Second approach: O(|V|log|V|+|E|log|V|)

So which is better?
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Dense vs. sparse again

First approach: O(|V|2+ |E|) or: O(|V|2)  
Second approach: O(|V|log|V|+|E|log|V|)

So which is better?
Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|))
Dense: O(|V|2+ |E|) , or: O(|V|2)  

But, remember these are worst-case and asymptotic
Priority queue might have slightly worse constant factors
On the other hand, for “normal graphs”, we might call decreaseKey rarely 
(or not percolate far), making |E|log|V| more like |E|
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