CSE 332: Data Structures & Parallelism
Lecture 19: Topological Sort, Traversals

Arthur Liu
.~ Summer 2022

Outline for Today

* Topological Sort
* BFS, DFS

Graph Problems

* Lots of interesting questions we can ask about a graph:

* What is the shortest route from S to T? What is the longest route without
cycles?

* Are there cycles in this graph?
* |s there a cycle that uses each vertex exactly once?
* Is there a cycle that uses each edge exactly once?

Introduction to Network Visualization with GEPHI — Martin Grandjean
Examples

8/08/2022

Graph Problems More Theoretically

 Some well known graph problems and their common names:

e st Path. Is there a path between vertices s and t?

e Connectivity. Is the graph connected?

* Biconnectivity. Is there a vertex whose removal disconnects the graph?

* Shortest s-t Path. What is the shortest path between vertices s and t?

* Cycle Detection. Does the graph contain any cycles?
(’1(5) "+ Euler Tour. Is there a cycle that uses every edge exactly once?

/-E Hamilton Tour. Is there a cycle that uses every vertex exactly once?

MNP-Hoy ¢ Planarity. Can you draw the graph on paper with no crossing edges?

* Isomorphism. Are two graphs the same graph (in disguise)?

e Often can’t tell how difficult a graph problem is without very deep
consideration.

First graph algorithm!

8/08/2022

TO po I ogi ca I SO rt Disclaimer: Do not use for official advising purposes!

(Implies that CSE 332 is a pre-req for CSE 312 - not true)

Problem: Given a DAG G=(V,E), output all the vertices in order such that no vertex

appears before any other vertex that has an edge to it

Example input:

e ey
(5

@
(3333

U6 E

Example output:
142, 126, 143, 311, 331, 332, 312, 341, 3b1, 333, 440, 352

8/08/2022

Valid Topological Sorts:

O)l\q,)’B A
)) O/S}l)L\ <>)<:5
'{_;E)) l)n’)"\
01 1,34

|)/L) O)’S/L’

8/08/2022

A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree =
Think “write in a field in the vertex”
Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output: -
a) Choose a vertex v Iabelevd with in-degree of O
b) Output v and \g)nceptua@emove it from the graph

c) Foreach vertex w adjacent to v (i.e. w such that (v,w) in E),
decrement the in-degree of w

In-degree
| Jo|O| TEL
V1| O | —{2] +3]/

V2 | #0 —t4al/

3| AL yoHals
Vouiload — OAT pat 1,0,

8/08/2022

Example Output:

=
=
&
=

G 14)~(5e 143
e e 31)
G 352

U6 E

Node: 126 | 142 | 143 | 311 | 312 | 331 (332 [|333 | 341 | 351 | 352 | 440

Removed?

In-degree | O O 2 1 2 1 1 2 1 1 1 1

Example Output:

126
Node: 126 | 142 | 143 | 311 | 312 | 331 (332 [|333 | 341 | 351 | 352 | 440

Removed? | x

In-degree | O O 21 |1 2 1 1 2 1 1 1 1

Example Output:

126
Node: 126 | 142 | 143 | 311 | 312 | 331 (332 [|333 | 341 | 351 | 352 | 440

Removed? | x X

In-degree | O O 10 |1 2 1 1 2 1 1 1 1

Example Output:

126
G e w
@ =
Node: 126 | 142 | 143 | 311 | 312 [331 | 332 (333 | 341 | 351 | 352 | 440

Removed? | x X X

In-degree | O O O 10 |2 10 |1 2 10 |40 |1 1

Example Output:

126
=
Node: 126 | 142 (143 | 311 | 312 | 331 [332 | 333 | 341 | 351 | 352 | 440

Removed? | x X X X

In-degree 0 0 0] 0 21 |0 10 (2 0] 0 1 1

Example Output:
126
142
P .
GsE 312
GE 352

(e 443
Y
3333

U6 E

Node: 126 | 142 | 143 | 311 | 312 | 331 (332 [|333 | 341 | 351 | 352 | 440

Removed? | x X X X X

In-degree | O O O 0] 1 O O 2 O 0] 1 1

Example Output:
126
Geaid
@ i
CoE 333
Gt 352

332

G 14)~(5e 143
Y

U6 E

Node: 126 | 142 | 143 | 311 | 312 | 331 (332 [|333 | 341 | 351 | 352 | 440

Removed? | x X X X X X

In-degree | O O O 0] 120 |0 O 21 |0 0] 1 10

Example Output:
126
P .
@ 331
GE 352

332
312

G 14)~(5e 143
Y

Coe 333

U6 E

Node: 126 | 142 | 143 | 311 | 312 | 331 (332 [|333 | 341 | 351 | 352 | 440

Removed? | x X X X X X X

In-degree | O O O 0] 0] O O 1 O 0] 1 O

Example Output:
126
o Geegy 1
SO T
e SR
GE 352

312

U6 E

Node: 126 | 142 | 143 | 311 | 312 | 331 (332 [|333 | 341 | 351 | 352 | 440

Removed? | x X X X X X X X

In-degree | O O O 0] 0] O O 1 O 0] 1 O

Example Output:
126
=
311
A
332
312

341
351

G 14)~(5e 143
Y

Coe 333

U6 E

Node: 126 | 142 | 143 | 311 | 312 | 331 (332 [|333 | 341 | 351 | 352 | 440

Removed? | x X X X X X X X X

In-degree | O O O 0] 0] O O 120 |0 0] 10 |0

Example Output:
126

Cse 33 i

CsE 312

CsE 352

G 14)~(5e 143
Y

U6 E

Node: 126 | 142 | 143 | 311 | 312 | 331 (332 [|333 | 341 | 351 | 352 | 440

Removed? | x X X X X X X X X X

In-degree | O O O 0] 0] O O O O o) O O

Example Output:
126

143

312

341

ey o

e 35

352

G 14)~(5e 143
Y

U6 E

Node: 126 | 142 | 143 | 311 | 312 | 331 (332 [|333 | 341 | 351 | 352 | 440

Removed? | x X X X X X X X X X X

In-degree | O O O 0] 0] O O O O o) O O

Example Output:
126

142

@ 311

331

332

@ 312

341

351

@ 333

@ 352

440

G 14)~(5e 143
Y

U6 E

Node: 126 | 142 | 143 | 311 | 312 | 331 (332 [|333 | 341 | 351 | 352 | 440

Removed? | x X X X X X X X X X X X

In-degree | O O O 0] 0] O O O O o) O O

A couple of things to note

No,

O ="]
* Needed a vertex with in-degree of O to start AN ()
* No cycles

* Ties between vertices with in-degrees of O can be broken arbitrarily
e Potentially many different correct orders

 What DAGs have exactly 1 topological ordering?

OHO-2 020 O

Topological Sort: Running time?
labelEachVertexWithItsInDegree(); — d\) J"E)

for (ctr=0; ctr < numVertices; ctr++) { \/
v = findNewVertexOfDegreeZero ()
put v next in output 1
for each w adjacent to v &

w.indegree--; 1
\

}
olurg + V(U +1+9))
O(\HE > Wy VHE)
O E+V")

S 0lut +vY) O(v")

8/08/2022

23

Topological Sort: Running time?

labelEachVertexWithItsInDegree() ;

for (ctr=0; ctr < numVertices; ctr++) {
v = findNewVertexOfDegreeZero() ;
put v next in output
for each w adjacent to v
w.1lndegree--;

 What is the worst-case running time?
 |nitialization O(|V]| + |E]|) (assuming adjacency list)
« Sum of all find-new-vertex O(|V|2) (because each O(|V|))
 Sum of all decrements O(|E|) (assuming adjacency list)
« Sototalis O(|V|2+ |E|) - not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!

* Keep the “pending” zero-degree nodes in a list, stack, queue, box,
table, or something

* Order we process them affects output but not correctness or efficiency
provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue O-degree nodes

2. While queue is not empty I
a) v=dequeue()
b) Outputvand remove it from the graph

c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement
the in-degree of w, if new degree is O, enqueue it

/

8/08/2022 25

Topological Sort(optimized): Running time?[pollev.com/artliu

labelAllAndEnqueueZeros () ; O é \/ +€>
for (ctr=0; ctr < numVertices; ctr++){ \/

v = dequeue(); 1
put v next in output
for each w adjacent to v { é,
w.1lndegree--;
if (w.indegree==0) j
enqueue (w) ; /|

MY
OD(VIT + \/(7,"’359
OlJ+e + 1V 38

| 3 L (V‘]‘V/L
TOES™ o V" 0V

8/08/2022 26

Topological Sort(optimized): Running time?

labelAllAndEnqueueZeros () ;
for(ctr=0; ctr < numVertices; ctr++) {
v = dequeue() ;
put v next in output
for each w adjacent to v {
w.1lndegree--;
if (w.indegree==0)
enqueue (w) ;
}
}

 What is the worst-case running time?
* |nitialization: O(|V|+|E]) (assuming adjacency list)
 Sum of all enqueues and dequeues: O(|V])
 Sum of all decrements: O(|E|) (assuming adjacency list)
 Sototalis O(|E|] + |V]|) - much better for sparse graph!

Topological Sort Uses

* Figuring out how to finish your degree
* Determining the order to compile files using a Makefile

* Determining what order a processor should execute threads
* Determining what assignment you should work on next

* In general, taking a dependency graph and coming up with an
order of execution

Another graph algorithm!

8/08/2022

29

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all
nodes reachable (i.e., there exists a path) from v

* Possibly “do something” for each node (an iterator!)
* E.g. Print to output, set some field, etc.

Basic idea:
* Keep following adjacent nodes

* But “mark” nodes after visiting them, so the traversal terminates, and we
process each reachable node exactly once

Graph Traversal: Abstract Idea

traverseGraph (Node start) {
Set pending = emptySet(); |
pending.add(stggzyﬁ\rh\
mark start as visited |
while (pending is not empty) { \Y
next = pending.remove () |
for each node u adjacent to next <§
if(u is not marked) { |
mark u)
pending.add (u)
}

- B(J- %) < OLE)

ol e)

Running time and options

* Assuming add and remove are O(1), entire traversal is O(|E|)
Use an adjacency list representation

* The order we traverse depends entirely on how add and remove
work/are implemented
* Depth-first graph search (DFS): a stack
* Breadth-first graph search (BFS): a queue

* DFS and BFS are “big ideas” in computer science

* Depth: recursively explore one part before going back to the other
parts not yet explored

 Breadth: Explore areas closer to the start node first

Recursive DFS, Example : trees

 Atree is a graph and DFS and BFS are particularly easy to “see”

DFS (Node start) {

and “process” (e.g. print) start

for each node u adjacent to start

if u is not<f§f§§§;
DFS (u)

Order processed: A, B,D, E,C, F, G, H
 Exactly what we called a “pre-order traversal” for trees

* The marking is not needed here, but we need it to support arbitrary graphs , we
need a way to process each node exactly once

QFS with a stack, Example: trees

\/ DFS2 (Node start) {
initialize stack s to hold start
mark start as visited
while (s is not empty) {
—) next = s.pop() // and “pzo ess”
for each node u adjacent to next
1f(u 1is not marked)
mark u and push onto s

G
RS
&
X
&
¥

2.

St el

Order processed: A) (,) F) H) C)@}L /D

* Adifferent but perfectly fine traversal

8/08/2022

DFS with a stack, Example: trees

DFS2 (Node start) {

Q initialize
mark start
while (s is

@ G next = s

@ G e for each

1f(u 1is

stack s to hold start
as visited
not empty) ({

.pop() // and “process”

node u adjacent to next
not marked)

@ m mark u and push onto s

Order processed: A,C,F,H, G, B, E,D

A different but perfectly fine traversal

1 L g

BFS with a queue, Example: trees >§ BRRE R, K

| abﬂb31

BFS (Node start) {
initialize queue g to hold start
mark start as visited
while (q is not empty) {
next = gq.dequeue()// and “process”
for each node u adjacent to next
1f(u 1is not marked)
mark u and enqueue onto q

Order processed: ;2\) 8, C)D)E) g) Q)\"\

e A “level-order” traversal

8/08/2022 36

BFS with a queue, Example: trees

BFS (Node start) {

Q initialize queue q to hold start
mark start as visited
while (q is not empty) {
@ G next = gq.dequeue()// and “process”
@ e e for each node u adjacent to next
1f(u 1is not marked)
@ m mark u and enqueue onto q

Order processed: A, B,C,D, E, F, G, H
A “level-order” traversal

@ Poll Everywhere pollev.com/artliu

For each of the following, indicate
what traversal could have processed
the graph in that order

1. A, D,H,1,J,C,G,B,FE D¢
2. AB,C,D,EFG,H,J I B
3. AAD,C,B,H,G,FEIJ 8%
4. A, B,EC,G,FJ,D,H, 1 N

8/08/2022

| /@%
DFS/BFS Comparison Q D

A
Breadth-first search: —~ U O
* Always finds shortest paths, i.e., “optimal solutions (5—5_;3‘(%6.@
«_Better for “what is the shortest path from x to y” _
 Queue may hol V|) nodes (e.g. at the bottom level of binary tree of

height h, 2" nodes in queue)

Depth-first search:

* Can use less space in finding a path

* If longest path in the graph is p and highest out-degree is d then DFS stack never
has more than d*p elements
’\

ee—
A third approach: Iterative deepening (IDDFS):
* Try DFS but don’t allow recursion more than K levels deep.
* If that fails, increment K and start the entire search over

* Like BFS, finds shortest paths. Like DFS, less space.

8/08/2022 39

IDDFS and Al

* IDDFS ideas can be applied to Al
search algorithms to prune out bad
branches earlier instead of
traversing them too far

* Helps us figure out how to “break ties”
when picking a path

Take CSE473 Al
(CSE415 Al Non-Majors)

8/08/2022 40

Saving the path

* Our graph traversals can answer the “reachability question”:
» “Is there a path from node x to node y?”

* Q: But what if we want to output the actual path”

* A: Like this:
* Instead of just “marking” a node, store the previous node along the path
(when processing u causes us to add v to the e search, setv. path field to

be u)

Example using BFS 5)*%i< R 9‘@ DA A
< —_—
NQ,

What is a path from Seattle to Austin
— Remember marked nodes are not re-enqueued

— Note shortest paths may not be unique Sﬁ‘A) §(~ , D 0\\\00 | Av\s\‘\’\

San Francisco -7

Vie SEA Dallas
8/08/2022 _? Vi/é_S?F

42

Example using BFS

What is a path from Seattle to Austin
— Remember marked nodes are not re-enqueued
— Note shortest paths may not be unique

San Francisco

8/08/2022

Austin

43

