CSE 332: Data Structures & Parallelism Lecture 19: Topological Sort, Traversals

Arthur Liu Summer 2022

Outline for Today

- Topological Sort
- BFS, DFS

Graph Problems

- Lots of interesting questions we can ask about a graph:
 - What is the shortest route from S to T? What is the longest route without cycles?
 - Are there cycles in this graph?
 - Is there a cycle that uses each vertex exactly once?
 - Is there a cycle that uses each edge exactly once?

Graph Problems More Theoretically

- Some well known graph problems and their common names:
 - s-t Path. Is there a path between vertices s and t?
 - Connectivity. Is the graph connected?
 - Biconnectivity. Is there a vertex whose removal disconnects the graph?
 - Shortest s-t Path. What is the shortest path between vertices s and t?
 - Cycle Detection. Does the graph contain any cycles?
 - Euler Tour. Is there a cycle that uses every edge exactly once?
 - Hamilton Tour. Is there a cycle that uses every vertex exactly once?
 - Planarity. Can you draw the graph on paper with no crossing edges?
 - Isomorphism. Are two graphs the same graph (in disguise)?
- Often can't tell how difficult a graph problem is without very deep consideration.

First graph algorithm!

Topological Sort

Disclaimer: Do not use for official advising purposes! (Implies that CSE 332 is a pre-req for CSE 312 – not true)

Problem: Given a DAG G=(V,E), output all the vertices in order such that no vertex appears before any other vertex that has an edge to it

Example input:

Example output:

142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

Valid Topological Sorts:

A First Algorithm for Topological Sort

- 1. Label ("mark") each vertex with its in-degree
 - Think "write in a field in the vertex"
 - Could also do this via a data structure (e.g., array) on the side
- 2. While there are vertices not yet output:
 - a) Choose a vertex v labeled with in-degree of 0
 - b) Output **v** and conceptually remove it from the graph
 - c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement the in-degree of w

Output:

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?												
In-degree	0	0	2	1	2	1	1	2	1	1	1	1

Output:

126

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	X											
In-degree	0	0	21	1	2	1	1	2	1	1	1	1

Output:

126

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x	X										
In-degree	0	0	1 0	1	2	1	1	2	1	1	1	1

Output:

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	X	Х	Х									
In-degree	0	0	0	1 0	2	1 0	1	2	1 0	1 0	1	1

Output:

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	X	X	X	X								
In-degree	0	0	0	0	2 1	0	1 0	2	0	0	1	1

Output:

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x	X	Х	X		Х						
In-degree	0	0	0	0	1	0	0	2	0	0	1	1

Output:

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	X	X	X	X		Х	Х					
In-degree	0	0	0	0	1 0	0	0	2 1	0	0	1	10

Output:

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	X	X	X	X	X	Х	Х					
In-degree	0	0	0	0	0	0	0	1	0	0	1	0

Output:

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	X	X	X	X	X	Х	Х		Х			
In-degree	0	0	0	0	0	0	0	1	0	0	1	0

Output:

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	X	X	X	X	X	X	X		X	X		
In-degree	0	0	0	0	0	0	0	1 0	0	0	1 0	0

Output:

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	X	Х	Х	X	X	Х	Х	Х	Х	Х		
In-degree	0	0	0	0	0	0	0	0	0	0	0	0

Output:

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	X	Х	Х	Х	X	Х	Х	Х	X	Х	X	
In-degree	0	0	0	0	0	0	0	0	0	0	0	0

Output:

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	X	X	X	X	X	X	X	X	X	X	X	X
In-degree	0	0	0	0	0	0	0	0	0	0	0	0

A couple of things to note

- Needed a vertex with in-degree of 0 to start
 - No cycles
- Ties between vertices with in-degrees of 0 can be broken arbitrarily
 - Potentially many different correct orders

What DAGs have exactly 1 topological ordering?

Topological Sort: Running time?

```
labelEachVertexWithItsInDegree(); → XU+E)
         for(ctr=0; ctr < numVertices; ctr++) { //</pre>
          v = findNewVertexOfDegreeZero() ( V
          put v next in output 1
           for each w adjacent to v
           w.indegree--; 1
0(E+V1) -> 0(V1+V1) 0(V1)
```

Topological Sort: Running time?

```
labelEachVertexWithItsInDegree();

for(ctr=0; ctr < numVertices; ctr++) {
   v = findNewVertexOfDegreeZero();
   put v next in output
   for each w adjacent to v
     w.indegree--;
}</pre>
```

- What is the worst-case running time?
 - Initialization O(|V| + |E|) (assuming adjacency list)
 - Sum of all find-new-vertex $O(|V|^2)$ (because each O(|V|))
 - Sum of all decrements O(|E|) (assuming adjacency list)
 - So total is $O(|V|^2 + |E|)$ not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, box, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both O(1)

Using a queue:

- 1. Label each vertex with its in-degree, enqueue 0-degree nodes
- 2. While queue is not empty
 - a) v = dequeue()
 - b) Output v and remove it from the graph
 - c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement the in-degree of w, if new degree is 0, enqueue it

Topological Sort(optimized): Running time?

pollev.com/artliu

```
labelAllAndEnqueueZeros();
       for(ctr=0; ctr < numVertices; ctr++) {</pre>
        v = dequeue(); 1
        put v next in output 1
        for each w adjacent to v {
          w.indegree--; 1
          if(w.indegree==0) ]
            enqueue (w);
V+E + 2V + 3E)
```

Topological Sort(optimized): Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
   v = dequeue();
   put v next in output
   for each w adjacent to v {
      w.indegree--;
      if(w.indegree==0)
          enqueue(w);
   }
}</pre>
```

- What is the worst-case running time?
 - Initialization: O(|V|+|E|) (assuming adjacency list)
 - Sum of all enqueues and dequeues: O(|V|)
 - Sum of all decrements: O(|E|) (assuming adjacency list)
 - So total is O(|E| + |V|) much better for sparse graph!

Topological Sort Uses

- Figuring out how to finish your degree
- Determining the order to compile files using a Makefile
- Determining what order a processor should execute threads
- Determining what assignment you should work on next

In general, taking a dependency graph and coming up with an order of execution

Another graph algorithm!

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable (i.e., there exists a path) from v

- Possibly "do something" for each node (an iterator!)
 - E.g. Print to output, set some field, etc.

Basic idea:

- Keep following adjacent nodes
- But "mark" nodes after visiting them, so the traversal terminates, and we process each reachable node exactly once

Graph Traversal: Abstract Idea


```
traverseGraph(Node start) {
   Set pending = emptySet();
   pending.add(start)
  mark start as visited
  while (pending is not empty) {
    next = pending.remove() |
    for each node u adjacent to next
       if(u is not marked) {
         mark u
         pending.add(u)
                  B(U. ) = O(E)
```

Running time and options

- Assuming add and remove are O(1), entire traversal is O(|E|)
 - Use an adjacency list representation
- The order we traverse depends entirely on how add and remove work/are implemented
 - Depth-first graph search (DFS): a stack
 - Breadth-first graph search (BFS): a queue
- DFS and BFS are "big ideas" in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: Explore areas closer to the start node first

Recursive DFS, Example: trees

A tree is a graph and DFS and BFS are particularly easy to "see"

Order processed: A, B, D, E, C, F, G, H

- Exactly what we called a "pre-order traversal" for trees
- The marking is not needed here, but we need it to support arbitrary graphs, we need a way to process each node exactly once

DFS with a stack, Example: trees

```
DFS2 (Node start) {
  initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
next = s.pop() // and "process"
    for each node u adjacent to next
     if(u is not marked)
      mark u and push onto s
```

Order processed: A, C, F, H, G, B, E, D

A different but perfectly fine traversal

DFS with a stack, Example: trees


```
DFS2(Node start) {
  initialize stack s to hold start
  mark start as visited
  while(s is not empty) {
    next = s.pop() // and "process"
    for each node u adjacent to next
    if(u is not marked)
      mark u and push onto s
  }
}
```

Order processed: A, C, F, H, G, B, E, D

A different but perfectly fine traversal

BFS with a queue, Example: trees


```
BFS(Node start) {
   initialize queue q to hold start
   mark start as visited
   while(q is not empty) {
     next = q.dequeue()// and "process"
     for each node u adjacent to next
        if(u is not marked)
        mark u and enqueue onto q
   }
}
```

Order processed: A, B, C, D, E, F, G, H

• A "level-order" traversal

BFS with a queue, Example: trees


```
BFS(Node start) {
   initialize queue q to hold start
   mark start as visited
   while(q is not empty) {
      next = q.dequeue()// and "process"
      for each node u adjacent to next
      if(u is not marked)
        mark u and enqueue onto q
   }
}
```

Order processed: A, B, C, D, E, F, G, H

A "level-order" traversal

11 Poll Everywhere

For each of the following, indicate what traversal could have processed the graph in that order

DFS/BFS Comparison

Breadth-first search:

- Always finds shortest paths, i.e., "optimal solutions
 - Better for "what is the shortest path from x to y"
- Queue may hold O(|V|) nodes (e.g. at the bottom level of binary tree of height h, 2^h nodes in queue)

Depth-first search:

- Can use less space in finding a path
 - If longest path in the graph is p and highest out-degree is d then DFS stack never has more than d*p elements

A third approach: *Iterative deepening (IDDFS)*:

- Try DFS but don't allow recursion more than **K** levels deep.
- If that fails, increment K and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

IDDFS and Al

- IDDFS ideas can be applied to Al search algorithms to prune out bad branches earlier instead of traversing them too far
 - Helps us figure out how to "break ties" when picking a path

Take CSE473 AI (CSE415 AI Non-Majors)

Saving the path

- Our graph traversals can answer the "reachability question":
 - "Is there a path from node x to node y?"
- Q: But what if we want to <u>output the actual path</u>?
- A: Like this:
 - Instead of just "marking" a node, store the <u>previous node</u> along the path (when processing u causes us to add v to the search, set v.path field to be u)

Example using BFS

What is a path from Seattle to Austin

8/08/2022

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

SEA, SF, Dalla, Austin

42

Example using BFS

What is a path from Seattle to Austin

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

