
CSE 332: Data Structures & Parallelism
Lecture 19: Topological Sort, Traversals

Arthur Liu
Summer 2022

8/08/2022 1

Outline for Today

• Topological Sort
• BFS, DFS

8/08/2022 2

ST

Graph Problems

• Lots of interesting questions we can ask about a graph:
• What is the shortest route from S to T? What is the longest route without

cycles?
• Are there cycles in this graph?
• Is there a cycle that uses each vertex exactly once?
• Is there a cycle that uses each edge exactly once?

8/08/2022 3

Graph Problems More Theoretically
• Some well known graph problems and their common names:
• s-t Path. Is there a path between vertices s and t?
• Connectivity. Is the graph connected?
• Biconnectivity. Is there a vertex whose removal disconnects the graph?
• Shortest s-t Path. What is the shortest path between vertices s and t?
• Cycle Detection. Does the graph contain any cycles?
• Euler Tour. Is there a cycle that uses every edge exactly once?
• Hamilton Tour. Is there a cycle that uses every vertex exactly once?
• Planarity. Can you draw the graph on paper with no crossing edges?
• Isomorphism. Are two graphs the same graph (in disguise)?

• Often can’t tell how difficult a graph problem is without very deep
consideration.

8/08/2022 4

First graph algorithm!

8/08/2022 5

Topological Sort

Problem: Given a DAG G=(V,E), output all the vertices in order such that no vertex
appears before any other vertex that has an edge to it

Example input:

Example output:
142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

…

Disclaimer: Do not use for official advising purposes!
(Implies that CSE 332 is a pre-req for CSE 312 – not true)

6

8/08/2022

1

3

4

2

0

Valid Topological Sorts:

7

A First Algorithm for Topological Sort
1. Label (“mark”) each vertex with its in-degree

• Think “write in a field in the vertex”
• Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a) Choose a vertex v labeled with in-degree of 0
b) Output v and conceptually remove it from the graph
c) For each vertex w adjacent to v (i.e. w such that (v,w) in E),

decrement the in-degree of w

1

3

4

2

0

1

2

3

4

2

4 /

4

/

3 /

0 3 /

/

In-degree

8/08/2022 8

Example Output:

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

9

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed?
In-degree 0 0 2 1 2 1 1 2 1 1 1 1

Example Output:
126

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

10

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x
In-degree 0 0 2 1 1 2 1 1 2 1 1 1 1

Example Output:
126

142

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

11

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x
In-degree 0 0 1 0 1 2 1 1 2 1 1 1 1

Example Output:
126

142
143

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

12

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x
In-degree 0 0 0 1 0 2 1 0 1 2 1 0 1 0 1 1

Example Output:
126

142
143
311

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

13

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x
In-degree 0 0 0 0 2 1 0 1 0 2 0 0 1 1

Example Output:
126

142
143
311
331

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

14

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x
In-degree 0 0 0 0 1 0 0 2 0 0 1 1

Example Output:
126

142
143
311
331
332

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

15

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x
In-degree 0 0 0 0 1 0 0 0 2 1 0 0 1 1 0

Example Output:
126

142
143
311
331
332
312

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

16

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x
In-degree 0 0 0 0 0 0 0 1 0 0 1 0

Example Output:
126

142
143
311
331
332
312
341

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

17

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x
In-degree 0 0 0 0 0 0 0 1 0 0 1 0

Example Output:
126

142
143
311
331
332
312
341

351

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

18

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x
In-degree 0 0 0 0 0 0 0 1 0 0 0 1 0 0

Example Output:
126
142
143
311
331
332
312
341
351
333

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

19

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x
In-degree 0 0 0 0 0 0 0 0 0 0 0 0

Example Output:
126
142
143

311
331
332
312

341
351
333
352

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

20

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x
In-degree 0 0 0 0 0 0 0 0 0 0 0 0

Example Output:
126
142
143
311
331
332
312
341
351
333
352
440

8/08/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

21

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x x
In-degree 0 0 0 0 0 0 0 0 0 0 0 0

A couple of things to note

• Needed a vertex with in-degree of 0 to start
• No cycles

• Ties between vertices with in-degrees of 0 can be broken arbitrarily
• Potentially many different correct orders

• What DAGs have exactly 1 topological ordering?

8/08/2022 22

Topological Sort: Running time?

8/08/2022

labelEachVertexWithItsInDegree();

for(ctr=0; ctr < numVertices; ctr++){
v = findNewVertexOfDegreeZero();
put v next in output
for each w adjacent to v
w.indegree--;

}

23

Topological Sort: Running time?

• What is the worst-case running time?
• Initialization O(|V| + |E|) (assuming adjacency list)
• Sum of all find-new-vertex O(|V|2) (because each O(|V|))
• Sum of all decrements O(|E|) (assuming adjacency list)
• So total is O(|V|2 + |E|) – not good for a sparse graph!

8/08/2022 24

labelEachVertexWithItsInDegree();

for(ctr=0; ctr < numVertices; ctr++){
v = findNewVertexOfDegreeZero();
put v next in output
for each w adjacent to v
w.indegree--;

}

Doing better

The trick is to avoid searching for a zero-degree node every time!
• Keep the “pending” zero-degree nodes in a list, stack, queue, box,

table, or something
• Order we process them affects output but not correctness or efficiency

provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty

a) v = dequeue()
b) Output v and remove it from the graph
c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement

the in-degree of w, if new degree is 0, enqueue it

8/08/2022 25

Topological Sort(optimized): Running time?
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
v = dequeue();
put v next in output
for each w adjacent to v {
w.indegree--;
if(w.indegree==0)

enqueue(w);
}

}

8/08/2022 26

pollev.com/artliu

Topological Sort(optimized): Running time?
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
v = dequeue();
put v next in output
for each w adjacent to v {
w.indegree--;
if(w.indegree==0)

enqueue(w);
}

}

• What is the worst-case running time?
• Initialization: O(|V|+|E|) (assuming adjacency list)
• Sum of all enqueues and dequeues: O(|V|)
• Sum of all decrements: O(|E|) (assuming adjacency list)
• So total is O(|E| + |V|) – much better for sparse graph!

8/08/2022 27

Topological Sort Uses

• Figuring out how to finish your degree
• Determining the order to compile files using a Makefile
• Determining what order a processor should execute threads
• Determining what assignment you should work on next

• In general, taking a dependency graph and coming up with an
order of execution

8/08/2022 28

Another graph algorithm!

8/08/2022 29

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all
nodes reachable (i.e., there exists a path) from v
• Possibly “do something” for each node (an iterator!)

• E.g. Print to output, set some field, etc.

Basic idea:
• Keep following adjacent nodes
• But “mark” nodes after visiting them, so the traversal terminates, and we

process each reachable node exactly once

8/08/2022 30

Graph Traversal: Abstract Idea

traverseGraph(Node start) {
Set pending = emptySet();
pending.add(start)
mark start as visited
while(pending is not empty) {
next = pending.remove()
for each node u adjacent to next

if(u is not marked) {
mark u
pending.add(u)

}
}

}

8/08/2022 31

Running time and options

• Assuming add and remove are O(1), entire traversal is O(|E|)
• Use an adjacency list representation

• The order we traverse depends entirely on how add and remove
work/are implemented
• Depth-first graph search (DFS): a stack
• Breadth-first graph search (BFS): a queue

• DFS and BFS are “big ideas” in computer science
• Depth: recursively explore one part before going back to the other

parts not yet explored
• Breadth: Explore areas closer to the start node first

8/08/2022 32

Recursive DFS, Example : trees

• A tree is a graph and DFS and BFS are particularly easy to “see”

8/08/2022

A

B

D E

C

F

HG

DFS(Node start) {
mark and “process”(e.g. print) start
for each node u adjacent to start

if u is not marked
DFS(u)

}

Order processed: A, B, D, E, C, F, G, H
• Exactly what we called a “pre-order traversal” for trees
• The marking is not needed here, but we need it to support arbitrary graphs , we

need a way to process each node exactly once
33

DFS with a stack, Example: trees

8/08/2022

A

B

D E

C

F

HG

DFS2(Node start) {
initialize stack s to hold start
mark start as visited
while(s is not empty) {

next = s.pop() // and “process”
for each node u adjacent to next
if(u is not marked)
mark u and push onto s

}
}

Order processed:
• A different but perfectly fine traversal

34

DFS with a stack, Example: trees

8/08/2022

A

B

D E

C

F

HG

DFS2(Node start) {
initialize stack s to hold start
mark start as visited
while(s is not empty) {

next = s.pop() // and “process”
for each node u adjacent to next
if(u is not marked)
mark u and push onto s

}
}

Order processed: A, C, F, H, G, B, E, D
• A different but perfectly fine traversal

35

BFS with a queue, Example: trees

8/08/2022

A

B

D E

C

F

HG

BFS(Node start) {
initialize queue q to hold start
mark start as visited
while(q is not empty) {

next = q.dequeue()// and “process”
for each node u adjacent to next
if(u is not marked)
mark u and enqueue onto q

}
}

Order processed:
• A “level-order” traversal

36

BFS with a queue, Example: trees

8/08/2022

A

B

D E

C

F

HG

BFS(Node start) {
initialize queue q to hold start
mark start as visited
while(q is not empty) {

next = q.dequeue()// and “process”
for each node u adjacent to next
if(u is not marked)
mark u and enqueue onto q

}
}

Order processed: A, B, C, D, E, F, G, H
• A “level-order” traversal

37

For each of the following, indicate
what traversal could have processed
the graph in that order

1. A, D, H, I, J, C, G, B, F, E
2. A, B, C, D, E, F, G, H, J, I
3. A, D, C, B, H, G, F, E, I, J
4. A, B, E, C, G, F, J, D, H, I

8/08/2022 38

E F

B

A

G

D

H

J I

C

pollev.com/artliu

DFS/BFS Comparison
Breadth-first search:
• Always finds shortest paths, i.e., “optimal solutions

• Better for “what is the shortest path from x to y”
• Queue may hold O(|V|) nodes (e.g. at the bottom level of binary tree of

height h, 2h nodes in queue)

Depth-first search:
• Can use less space in finding a path

• If longest path in the graph is p and highest out-degree is d then DFS stack never
has more than d*p elements

A third approach: Iterative deepening (IDDFS):
• Try DFS but don’t allow recursion more than K levels deep.
• If that fails, increment K and start the entire search over

• Like BFS, finds shortest paths. Like DFS, less space.

8/08/2022 39

IDDFS and AI

• IDDFS ideas can be applied to AI
search algorithms to prune out bad
branches earlier instead of
traversing them too far
• Helps us figure out how to “break ties”

when picking a path

Take CSE473 AI
(CSE415 AI Non-Majors)

8/08/2022 40

Saving the path

• Our graph traversals can answer the “reachability question”:
• “Is there a path from node x to node y?”

• Q: But what if we want to output the actual path?

• A: Like this:
• Instead of just “marking” a node, store the previous node along the path

(when processing u causes us to add v to the search, set v.path field to
be u)

8/08/2022 41

Example using BFS

8/08/2022

Seattle

San Francisco
Dallas

Salt Lake City

What is a path from Seattle to Austin
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique

Chicago

Austin

42

Example using BFS

8/08/2022

Seattle

San Francisco
Dallas

Salt Lake City

What is a path from Seattle to Austin
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique

Chicago

Austin

1

1

1

2
3

0

43

