CSE 332: Data Structures \& Parallelism Lecture 19: Topological Sort, Traversals

Arthur Liu
Summer 2022

Outline for Today

- Topological Sort
- BFS, DFS

Graph Problems

- Lots of interesting questions we can ask about a graph:
- What is the shortest route from S to T ? What is the longest route without cycles?
- Are there cycles in this graph?
- Is there a cycle that uses each vertex exactly once?
- Is there a cycle that uses each edge exactly once?

Graph Problems More Theoretically

- Some well known graph problems and their common names:
- s-t Path. Is there a path between vertices s and t?
- Connectivity. Is the graph connected?
- Biconnectivity. Is there a vertex whose removal disconnects the graph?
- Shortest s-t Path. What is the shortest path between vertices s and t?
- Cycle Detection. Does the graph contain any cycles?
- Euler Tour. Is there a cycle that uses every edge exactly once?
- Hamilton Tour. Is there a cycle that uses every vertex exactly once?
- Planarity. Can you draw the graph on paper with no crossing edges?
- Isomorphism. Are two graphs the same graph (in disguise)?
- Often can't tell how difficult a graph problem is without very deep consideration.

First graph algorithm!

Topological Sort

Problem: Given a DAG G=(V,E), output all the vertices in order such that no vertex appears before any other vertex that has an edge to it

Example input:

Example output:
142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

Valid Topological Sorts:

A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree

- Think "write in a field in the vertex"
- Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a) Choose a vertex v labeled with in-degree of 0
b) Output v and conceptually remove it from the graph
c) For each vertex \mathbf{w} adjacent to \mathbf{v} (i.e. \mathbf{w} such that (\mathbf{v}, \mathbf{w}) in \mathbf{E}),
decrement the in-degree of \mathbf{w}

Example

Output:

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?												
In-degree	0	0	2	1	2	1	1	2	1	1	1	1

Example

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x											
In-degree	0	0	$z 1$	1	2	1	1	2	1	1	1	1

Example

Output:

126
142

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x	x										
In-degree	0	0	10	1	2	1	1	2	1	1	1	1

Example

Output:

126

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x	x	x									
In-degree	0	0	0	± 0	2	± 0	1	2	± 0	± 0	1	1

Example

Output:

126
142143311

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x	x	x	x								
In-degree	0	0	0	0	$z 1$	0	10	2	0	0	1	1

Example

Output:

126

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x	x	x	x		x						
In-degree	0	0	0	0	1	0	0	2	0	0	1	1

Example

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x	x	x	x		x	x					
In-degree	0	0	0	0	10	0	0	$z 1$	0	0	1	10

Example

Output:

126142143311331332312

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x	x	x	x	x	x	x					
In-degree	0	0	0	0	0	0	0	1	0	0	1	0

Example

Output:

126
142
143
311
331
332
312
341

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x	x	x	x	x	x	x		x			
In-degree	0	0	0	0	0	0	0	1	0	0	1	0

Example

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x	x	x	x	x	x	x		x	x		
In-degree	0	0	0	0	0	0	0	10	0	0	10	0

Example

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x	x	x	x	x	x	x	x	x	x		
In-degree	0	0	0	0	0	0	0	0	0	0	0	0

Example

Output:

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x	x	x	x	x	x	x	x	x	x	x	
In-degree	0	0	0	0	0	0	0	0	0	0	0	0

Example

126142143311331332

$$
312
$$

$$
341
$$

$$
351
$$

$$
333
$$

$$
352
$$

$$
440
$$

Node:	126	142	143	311	312	331	332	333	341	351	352	440
Removed?	x	x	x	x	x	x	x	x	x	x	x	x
In-degree	0	0	0	0	0	0	0	0	0	0	0	0

A couple of things to note

- Needed a vertex with in-degree of 0 to start
- No cycles
- Ties between vertices with in-degrees of 0 can be broken arbitrarily
- Potentially many different correct orders
-What DAGs have exactly 1 topological ordering?

Topological Sort: Running time?

labelEachVertexWithItsInDegree();

```
for(ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```


Topological Sort: Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```

- What is the worst-case running time?
- Initialization $O(|V|+|E|)$ (assuming adjacency list)
- Sum of all find-new-vertex $O\left(|\mathrm{~V}|^{2}\right)$ (because each $O(|\mathrm{~V}|)$)
- Sum of all decrements $O(|E|)$ (assuming adjacency list)
- So total is $O\left(|\mathrm{~V}|^{2}+|\mathrm{E}|\right)$ - not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, box, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
a) $v=$ dequeue()
b) Output v and remove it from the graph
c) For each vertex \mathbf{w} adjacent to \mathbf{v} (i.e. w such that (\mathbf{v}, \mathbf{w}) in \mathbf{E}), decrement the in-degree of w, if new degree is 0 , enqueue it

Topological Sort(optimized): Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
            if(w.indegree==0)
                enqueue (w);
    }
}
```


Topological Sort(optimized): Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
            w.indegree--;
            if(w.indegree==0)
            enqueue(w);
    }
}
```

- What is the worst-case running time?
- Initialization: $O(|\mathrm{~V}|+|\mathrm{E}|)$ (assuming adjacency list)
- Sum of all enqueues and dequeues: O(|V|)
- Sum of all decrements: $O(|E|)$ (assuming adjacency list)
- So total is $O(|\mathrm{E}|+|\mathrm{V}|)$ - much better for sparse graph!

Topological Sort Uses

- Figuring out how to finish your degree
- Determining the order to compile files using a Makefile
- Determining what order a processor should execute threads
- Determining what assignment you should work on next
- In general, taking a dependency graph and coming up with an order of execution

Another graph algorithm!

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable (i.e., there exists a path) from v

- Possibly "do something" for each node (an iterator!)
- E.g. Print to output, set some field, etc.

Basic idea:

- Keep following adjacent nodes
- But "mark" nodes after visiting them, so the traversal terminates, and we process each reachable node exactly once

Graph Traversal: Abstract Idea

```
traverseGraph(Node start) {
    Set pending = emptySet();
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
            if(u is not marked) {
            mark u
            pending.add(u)
        }
    }
}
```


Running time and options

- Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$
- Use an adjacency list representation
- The order we traverse depends entirely on how add and remove work/are implemented
- Depth-first graph search (DFS): a stack
- Breadth-first graph search (BFS): a queue
- DFS and BFS are "big ideas" in computer science
- Depth: recursively explore one part before going back to the other parts not yet explored
- Breadth: Explore areas closer to the start node first

Recursive DFS, Example : trees

- A tree is a graph and DFS and BFS are particularly easy to "see"


```
DFS (Node start) {
    mark and "process"(e.g. print) start
    for each node u adjacent to start
            if u is not marked
                DFS (u)
}
```

Order processed: A, B, D, E, C, F, G, H

- Exactly what we called a "pre-order traversal" for trees
- The marking is not needed here, but we need it to support arbitrary graphs, we need a way to process each node exactly once

DFS with a stack, Example: trees

Order processed:

- A different but perfectly fine traversal

DFS with a stack, Example: trees

Order processed: A, C, F, H, G, B, E, D

- A different but perfectly fine traversal

BFS with a queue, Example: trees

Order processed:

- A "level-order" traversal

BFS with a queue, Example: trees

Order processed: A, B, C, D, E, F, G, H

- A "level-order" traversal

(II) Poll Everywhere

For each of the following, indicate what traversal could have processed the graph in that order

1. A, D, H, I, J, C, G, B, F, E
2. A, B, C, D, E, F, G, H, J, I
3. A, D, C, B, H, G, F, E, I, J
4. A, B, E, C, G, F, J, D, H, I

DFS/BFS Comparison

Breadth-first search:

- Always finds shortest paths, i.e., "optimal solutions
- Better for "what is the shortest path from \mathbf{x} to $\mathbf{y "}$
- Queue may hold $O(|\mathrm{~V}|)$ nodes (e.g. at the bottom level of binary tree of height $\mathrm{h}, 2^{\mathrm{h}}$ nodes in queue)

Depth-first search:

- Can use less space in finding a path
- If longest path in the graph is pand highest out-degree is \mathbf{d} then DFS stack never has more than $\mathbf{d *}$ p elements

A third approach: Iterative deepening (IDDFS):

- Try DFS but don't allow recursion more than K levels deep.
- If that fails, increment K and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

IDDFS and AI

- IDDFS ideas can be applied to AI search algorithms to prune out bad branches earlier instead of traversing them too far
- Helps us figure out how to "break ties" when picking a path

Take CSE473 AI
(CSE415 AI Non-Majors)

Saving the path

- Our graph traversals can answer the "reachability question":
- "Is there a path from node x to node y ?"
- Q: But what if we want to output the actual path?
- A: Like this:
- Instead of just "marking" a node, store the previous node along the path (when processing u causes us to add v to the search, set v. path field to be u)

Example using BFS

What is a path from Seattle to Austin

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Example using BFS

What is a path from Seattle to Austin

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

