
CSE 332: Data Structures & Parallelism
Lecture 18: Graphs Intro

Arthur Liu
Summer 2022

8/05/2022 1

Outline for Today

• Graph terminology
• Adjacency Matrix, Adjacency List

8/05/2022 2

ADTs so far

• We’ve seen:
• Queues and Stacks
• Our data points have some order we’re maintaining

• Priority Queues
• Our data had some priority we needed to keep track of.

• Dictionaries
• Our data points came as (key, value) pairs.

8/05/2022 3

Graphs

Graphs are too versatile to think of them as only an ADT!
8/05/2022 4

Graphs

Represent data points and the relationships between them.
That’s vague.

Formally:
A graph is a pair: G = (V,E)
V: set of vertices (aka nodes)
E: set of edges

Each edge is a pair of vertices.

8/05/2022 5

Hans

Dara

Nathan

V = {Hans,Dara,Nathan}
E = {(Nathan,Dara),

(Hans,Dara),
(Dara,Hans)}

Making Graphs

If your problem has data and relationships, you might want to
represent it as a graph
How do you choose a representation?

Usually:
Think about what your “fundamental” objects are

Those become your vertices.

Then think about how they’re related
Those become your edges.

8/05/2022 6

Some examples

For each of the following think about what you should choose for
vertices and edges.
The internet.

Facebook friendships

Input data for the “6 degrees of Kevin Bacon” game

Course Prerequisites

8/05/2022 7

Some examples

For each of the following think about what you should choose for
vertices and edges.
The internet.

Vertices: webpages. Edges from a to b if a has a hyperlink to b.
Facebook friendships

Vertices: people. Edges: if two people are friends
Input data for the “6 Degrees of Kevin Bacon” game

Vertices: actors. Edges: if two people appeared in the same movie
Or: Vertices for actors and movies, edge from actors to movies they appeared in.

Course Prerequisites
Vertices: courses. Edge: from a to b if a is a prereq for b.

8/05/2022 8

More Graphs

• We’ve already used graphs to represent things in this course:

A LOT

8/05/2022 9

Graph Terms

8/05/2022 10

Undirected Graphs

• In undirected graphs, edges have no specific direction
• Edges are always “two-way”

8/05/2022 11

• Thus, (u,v) Î E implies (v,u) Î E.
– Only one of these edges needs to be in the set; the other is implicit

• Degree of a vertex: number of edges containing that vertex
– Put another way: the number of adjacent vertices

A

B

C

D

Directed Graphs

• In directed graphs (sometimes called digraphs), edges have a
direction

• Thus, (u,v) Î E does not imply (v,u) Î E.
• Let (u,v) Î E mean u → v
• Call u the source and v the destination

• In-Degree of a vertex: number of in-bound edges,
i.e., edges where the vertex is the destination

• Out-Degree of a vertex: number of out-bound edges
i.e., edges where the vertex is the source

or

2 edges
here

A

B

C

D A

B

C

8/05/2022 12

D

Graph Terms

Walk – A sequence of adjacent vertices. Each connected to next by an edge.

(Directed) Walk–must follow the direction of the edges

Length – The number of edges in a walk
- (A,B,C,D) has length 3.

A B C D

A B C D

A,B,C,D is a walk.
So is A,B,A

A,B,C,D,A is a directed walk.
A,B,A is not.

8/05/2022 14

Graph Terms

Path – A walk that doesn’t repeat a vertex. A,B,C,D is a path. A,B,A is not.

Cycle – path with an extra edge from last vertex back to first.

Be careful looking at other sources. Some people call our “walks” “paths” and
our “paths” “simple paths”
Use the definitions on these slides.

A B C D

A B C D

8/05/2022 15

Undirected graph connectivity

• An undirected graph is connected if for all
pairs of vertices u,v, there exists a path from u to v

8/05/2022 16

Connected graph Disconnected graph

Directed graph connectivity

• A directed graph is strongly connected if
there is a path from every vertex to every
other vertex

• A directed graph is weakly connected if
there is a path from every vertex to every
other vertex ignoring direction of edges

8/05/2022 17

Complete Graph

A complete graph is a graph in which there is an edge between every
pair of vertices.

8/05/2022 18

Some math with edges

For a graph G = (V,E):
• |V| = N, is the number of vertices
• |E| = M, is the number of edges
• Minimum?
• Maximum for undirected?
• Maximum for directed?

• If (u,v) Î E
• Then v is a neighbor of u, i.e., v is adjacent to u
• Order matters for directed edges

• u is not adjacent to v unless (v,u) Î E

8/05/2022 19

A

B

C

V = {A, B, C, D}
E = {(C, B),

(A, B),
(B, A)
(C, D)}

D

Density / Sparsity

8/05/2022 20

0 edges O(V2) edgesO(V)
edges

Undirected
connected graph
must have at least
V – 1 edges

Sparse Dense

Representing and Using Graphs

8/05/2022 21

Adjacency Matrix
• Assign each node a number from 0 to |V|-1
• A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
• If M is the matrix, then M[u][v] == true

means there is an edge from u to v

8/05/2022 22

A

B

C

D

A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F

Adjacency Matrix Properties

• Running time to:
• Get a vertex’s out-edges:
• Get a vertex’s in-edges:
• Decide if some edge exists:
• Insert an edge:
• Delete an edge:

• Space requirements:

• Best for sparse or dense graphs?

8/05/2022 23

A

B

C

D

A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F

Adjacency Matrix Properties

• Running time to:
• Get a vertex’s out-edges: O(|V|)
• Get a vertex’s in-edges: O(|V|)
• Decide if some edge exists: O(1)
• Insert an edge: O(1)
• Delete an edge: O(1)

• Space requirements:
• |V|2 bits

• Best for sparse or dense graphs?
• Best for dense graphs

8/05/2022 24

A

B

C

D

A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F

Adjacency Matrix Properties

• How will the adjacency matrix vary for an undirected graph?
• Undirected will be symmetric about diagonal axis

• How can we adapt the representation for weighted graphs?
• Instead of a Boolean, store a number in each cell
• Need some value to represent ‘not an edge’

• In some situations, 0 or -1 works

8/05/2022 26

A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F

Adjacency List

• Assign each node a number from 0 to |V|-1
• An array of length |V| in which each entry stores a list of

all adjacent vertices (e.g., linked list)

8/05/2022 27

A

B

C

D
A

B

C

D

B /

A /

D B /

/

Adjacency List Properties

• Running time to:
• Get all of a vertex’s out-edges:

• Get all of a vertex’s in-edges:

• Decide if some edge exists:

• Insert an edge:
• Delete an edge:

• Space requirements:

• Best for dense or sparse graphs?

A

B

C

D

B /

A /

D B /

/

8/05/2022 28

A

B

C

D

Adjacency List Properties

• Running time to:
• Get all of a vertex’s out-edges:
O(d) where d is out-degree of vertex

• Get all of a vertex’s in-edges:
O(|V| + |E|) (but could keep a second adjacency list for this!)

• Decide if some edge exists:
O(d) where d is out-degree of source

• Insert an edge: O(1) (unless you need to check if it’s there)
• Delete an edge: O(d) where d is out-degree of source

• Space requirements:
• O(|V|+|E|)

• Best for dense or sparse graphs?
• Best for sparse graphs, so can sometimes just stick with linked lists

A

B

C

D

B /

A /

D B /

/

8/05/2022 29

A

B

C

D

Which is better?

Graphs are often sparse:
• Streets form grids
• every corner is not connected to every other corner

• Airlines rarely fly to all possible cities
• or if they do it is to/from a hub rather than directly to/from all small cities

to other small cities

Adjacency lists should generally be your default choice

308/05/2022

Some other special graphs we’ve seen

8/05/2022 31

Trees as graphs

In graph theory,
we say a tree is a graph that is:
• undirected
• acyclic
• connected

How does this relate to the trees
we know and love?...

8/05/2022 32

A

B

D E

C

F

HG

Example:

Rooted Trees
• We are more accustomed to rooted trees where:

• We identify a unique (“special”) root
• We think of edges as directed: parent to children

• Given a tree, once you pick a root, you have a unique rooted tree
(just drawn differently and with undirected edges)

8/05/2022 33

A

B

D E

C

F

HG

redrawn
A

B

D E

C

F

HG

Rooted Trees (Another example)
• We are more accustomed to rooted trees where:

• We identify a unique (“special”) root
• We think of edges as directed: parent to children

• Given a tree, once you pick a root, you have a unique rooted tree
(just drawn differently and with undirected edges)

8/05/2022 34

redrawn

F

G H C

A

B

D E

A

B

D E

C

F

HG

Directed acyclic graphs (DAGs)

• A DAG is a directed graph with no (directed) cycles
• Every rooted directed tree is a DAG

• But not every DAG is a rooted directed tree:

• Every DAG is a directed graph
• But not every directed graph is a DAG:

8/05/2022 35

First graph algorithm!

8/05/2022 36

Topological Sort

Problem: Given a DAG G=(V,E), output all the vertices in order such that no vertex
appears before any other vertex that has an edge to it

Example input:

Example output:
142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

…

Disclaimer: Do not use for official advising purposes!
(Implies that CSE 332 is a pre-req for CSE 312 – not true)

37

8/05/2022

1

3

4

2

0

Valid Topological Sorts:

38

A First Algorithm for Topological Sort
1. Label (“mark”) each vertex with its in-degree

• Think “write in a field in the vertex”
• Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a) Choose a vertex v labeled with in-degree of 0
b) Output v and conceptually remove it from the graph
c) For each vertex w adjacent to v (i.e. w such that (v,w) in E),

decrement the in-degree of w

1

3

4

2

0

1

2

3

4

2

4 /

4

/

3 /

0 3 /

/

In-degree

8/05/2022 39

Example Output:

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

40

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed?
In-degree 0 0 2 1 2 1 1 2 1 1 1 1

Example Output:
126

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

41

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x
In-degree 0 0 2 1 1 2 1 1 2 1 1 1 1

Example Output:
126

142

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

42

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x
In-degree 0 0 1 0 1 2 1 1 2 1 1 1 1

Example Output:
126

142
143

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

43

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x
In-degree 0 0 0 1 0 2 1 0 1 2 1 0 1 0 1 1

Example Output:
126

142
143
311

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

44

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x
In-degree 0 0 0 0 2 1 0 1 0 2 0 0 1 1

Example Output:
126

142
143
311
331

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

45

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x
In-degree 0 0 0 0 1 0 0 2 0 0 1 1

Example Output:
126

142
143
311
331
332

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

46

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x
In-degree 0 0 0 0 1 0 0 0 2 1 0 0 1 1 0

Example Output:
126

142
143
311
331
332
312

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

47

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x
In-degree 0 0 0 0 0 0 0 1 0 0 1 0

Example Output:
126

142
143
311
331
332
312
341

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

48

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x
In-degree 0 0 0 0 0 0 0 1 0 0 1 0

Example Output:
126

142
143
311
331
332
312
341

351

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

49

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x
In-degree 0 0 0 0 0 0 0 1 0 0 0 1 0 0

Example Output:
126
142
143
311
331
332
312
341
351
333

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

50

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x
In-degree 0 0 0 0 0 0 0 0 0 0 0 0

Example Output:
126
142
143

311
331
332
312

341
351
333
352

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

51

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x
In-degree 0 0 0 0 0 0 0 0 0 0 0 0

Example Output:
126
142
143
311
331
332
312
341
351
333
352
440

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

52

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x x
In-degree 0 0 0 0 0 0 0 0 0 0 0 0

A couple of things to note

• Needed a vertex with in-degree of 0 to start
• No cycles

• Ties between vertices with in-degrees of 0 can be broken arbitrarily
• Potentially many different correct orders

• What DAGs have exactly 1 topological ordering?

8/05/2022 53

Topological Sort: Running time?

8/05/2022

labelEachVertexWithItsInDegree();

for(ctr=0; ctr < numVertices; ctr++){
v = findNewVertexOfDegreeZero();
put v next in output
for each w adjacent to v
w.indegree--;

}

54

Topological Sort: Running time?

• What is the worst-case running time?
• Initialization O(|V| + |E|) (assuming adjacency list)
• Sum of all find-new-vertex O(|V|2) (because each O(|V|))
• Sum of all decrements O(|E|) (assuming adjacency list)
• So total is O(|V|2 + |E|) – not good for a sparse graph!

8/05/2022 55

labelEachVertexWithItsInDegree();

for(ctr=0; ctr < numVertices; ctr++){
v = findNewVertexOfDegreeZero();
put v next in output
for each w adjacent to v
w.indegree--;

}

Doing better

The trick is to avoid searching for a zero-degree node every time!
• Keep the “pending” zero-degree nodes in a list, stack, queue, box,

table, or something
• Order we process them affects output but not correctness or efficiency

provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty

a) v = dequeue()
b) Output v and remove it from the graph
c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement

the in-degree of w, if new degree is 0, enqueue it

8/05/2022 56

Topological Sort(optimized): Running time?
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
v = dequeue();
put v next in output
for each w adjacent to v {
w.indegree--;
if(w.indegree==0)

enqueue(w);
}

}

8/05/2022 57

Topological Sort(optimized): Running time?
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
v = dequeue();
put v next in output
for each w adjacent to v {
w.indegree--;
if(w.indegree==0)

enqueue(w);
}

}

• What is the worst-case running time?
• Initialization: O(|V|+|E|) (assuming adjacency list)
• Sum of all enqueues and dequeues: O(|V|)
• Sum of all decrements: O(|E|) (assuming adjacency list)
• So total is O(|E| + |V|) – much better for sparse graph!

8/05/2022 58

Topological Sort Uses

• Figuring out how to finish your degree
• Determining the order to compile files using a Makefile
• Determining what assignment you should work on next

• In general, taking a dependency graph and coming up with an
order of execution

8/05/2022 59

