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Outline for Today

• Graph terminology
• Adjacency Matrix, Adjacency List
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ADTs so far

• We’ve seen:
• Queues and Stacks
• Our data points have some order we’re maintaining

• Priority Queues
• Our data had some priority we needed to keep track of.

• Dictionaries
• Our data points came as (key, value) pairs.
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Graphs

Graphs are too versatile to think of them as only an ADT!
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Graphs

Represent data points and the relationships between them.
That’s vague.

Formally: 
A graph is a pair: G = (V,E)
V: set of vertices (aka nodes)
E: set of edges

Each edge is a pair of vertices. 
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Hans

Dara

Nathan

V = {Hans,Dara,Nathan}
E = {(Nathan,Dara), 

(Hans,Dara), 
(Dara,Hans)}



Making Graphs

If your problem has data and relationships, you might want to 
represent it as a graph
How do you choose a representation?

Usually:
Think about what your “fundamental” objects are

Those become your vertices.

Then think about how they’re related
Those become your edges.
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Some examples

For each of the following think about what you should choose for 
vertices and edges.
The internet. 

Facebook friendships

Input data for the “6 degrees of Kevin Bacon” game

Course Prerequisites
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Some examples

For each of the following think about what you should choose for 
vertices and edges.
The internet. 

Vertices: webpages. Edges from a to b if a has a hyperlink to b. 
Facebook friendships

Vertices: people. Edges: if two people are friends
Input data for the “6 Degrees of Kevin Bacon” game

Vertices: actors. Edges: if two people appeared in the same movie
Or: Vertices for actors and movies, edge from actors to movies they appeared in.

Course Prerequisites
Vertices: courses. Edge: from a to b if a is a prereq for b.
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More Graphs

• We’ve already used graphs to represent things in this course:

A LOT
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Graph Terms
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Undirected Graphs

• In undirected graphs, edges have no specific direction
• Edges are always “two-way”
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• Thus, (u,v) Î E implies (v,u) Î E.  
– Only one of these edges needs to be in the set; the other is implicit

• Degree of a vertex: number of edges containing that vertex
– Put another way: the number of adjacent vertices
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Directed Graphs

• In directed graphs (sometimes called digraphs), edges have a 
direction

• Thus, (u,v) Î E does not imply (v,u) Î E.  
• Let (u,v) Î E mean u → v 
• Call u the source and v the destination

• In-Degree of a vertex: number of in-bound edges, 
i.e., edges where the vertex is the destination

• Out-Degree of a vertex: number of out-bound edges
i.e., edges where the vertex is the source

or

2 edges 
here
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Graph Terms

Walk – A sequence of adjacent vertices. Each connected to next by an edge.

(Directed) Walk–must follow the direction of the edges

Length – The number of edges in a walk
- (A,B,C,D) has length 3.

A B C D

A B C D

A,B,C,D is a walk.
So is A,B,A

A,B,C,D,A is a directed walk.
A,B,A is not.
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Graph Terms

Path – A walk that doesn’t repeat a vertex. A,B,C,D is a path. A,B,A is not.

Cycle – path with an extra edge from last vertex back to first.

Be careful looking at other sources. Some people call our “walks” “paths” and 
our “paths” “simple paths”
Use the definitions on these slides. 

A B C D

A B C D
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Undirected graph connectivity

• An undirected graph is connected if for all
pairs of vertices u,v, there exists a path from u to v
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Connected graph Disconnected graph



Directed graph connectivity

• A directed graph is strongly connected if 
there is a path from every vertex to every 
other vertex

• A directed graph is weakly connected if 
there is a path from every vertex to every 
other vertex ignoring direction of edges
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Complete Graph

A complete graph is a graph in which there is an edge between every 
pair of vertices. 
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Some math with edges

For a graph G = (V,E):
• |V| = N, is the number of vertices
• |E| = M, is the number of edges
• Minimum?
• Maximum for undirected?
• Maximum for directed?

• If (u,v) Î E
• Then v is a neighbor of u, i.e., v is adjacent to u
• Order matters for directed edges

• u is not adjacent to v unless (v,u) Î E
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V = {A, B, C, D}
E = {(C, B), 

(A, B), 
(B, A)
(C, D)}

D



Density / Sparsity
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0 edges O(V2) edgesO(V) 
edges

Undirected 
connected graph 
must have at least 
V – 1 edges

Sparse Dense



Representing and Using Graphs
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Adjacency Matrix
• Assign each node a number from 0 to |V|-1
• A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
• If M is the matrix, then M[u][v] == true

means there is an edge from u to v
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Adjacency Matrix Properties

• Running time to:
• Get a vertex’s out-edges: 
• Get a vertex’s in-edges: 
• Decide if some edge exists: 
• Insert an edge: 
• Delete an edge: 

• Space requirements:

• Best for sparse or dense graphs?
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Adjacency Matrix Properties

• Running time to:
• Get a vertex’s out-edges: O(|V|)
• Get a vertex’s in-edges: O(|V|)
• Decide if some edge exists: O(1)
• Insert an edge: O(1)
• Delete an edge: O(1)

• Space requirements:
• |V|2 bits

• Best for sparse or dense graphs?
• Best for dense graphs
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Adjacency Matrix Properties

• How will the adjacency matrix vary for an undirected graph?
• Undirected will be symmetric about diagonal axis

• How can we adapt the representation for weighted graphs?
• Instead of a Boolean, store a number in each cell
• Need some value to represent ‘not an edge’

• In some situations, 0 or -1 works
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Adjacency List

• Assign each node a number from 0 to |V|-1
• An array of length |V| in which each entry stores a list of 

all adjacent vertices (e.g., linked list)
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Adjacency List Properties

• Running time to:
• Get all of a vertex’s out-edges: 

• Get all of a vertex’s in-edges:

• Decide if some edge exists: 

• Insert an edge: 
• Delete an edge: 

• Space requirements:

• Best for dense or sparse graphs? 
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Adjacency List Properties

• Running time to:
• Get all of a vertex’s out-edges: 
O(d) where d is out-degree of vertex

• Get all of a vertex’s in-edges:
O(|V| + |E|) (but could keep a second adjacency list for this!)

• Decide if some edge exists: 
O(d) where d is out-degree of source

• Insert an edge: O(1) (unless you need to check if it’s there)
• Delete an edge: O(d) where d is out-degree of source

• Space requirements:
• O(|V|+|E|)

• Best for dense or sparse graphs? 
• Best for sparse graphs, so can sometimes just stick with linked lists
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Which is better?

Graphs are often sparse:
• Streets form grids 
• every corner is not connected to every other corner

• Airlines rarely fly to all possible cities 
• or if they do it is to/from a hub rather than directly to/from all small cities 

to other small cities

Adjacency lists should generally be your default choice
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Some other special graphs we’ve seen
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Trees as graphs

In graph theory, 
we say a tree is a graph that is:
• undirected
• acyclic
• connected

How does this relate to the trees 
we know and love?...
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Rooted Trees
• We are more accustomed to rooted trees where:

• We identify a unique (“special”) root
• We think of edges as directed: parent to children

• Given a tree, once you pick a root, you have a unique rooted tree 
(just drawn differently and with undirected edges)
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Rooted Trees (Another example)
• We are more accustomed to rooted trees where:

• We identify a unique (“special”) root
• We think of edges as directed: parent to children

• Given a tree, once you pick a root, you have a unique rooted tree 
(just drawn differently and with undirected edges)

8/05/2022 34

redrawn

F

G H C

A

B

D E

A

B

D E

C

F

HG



Directed acyclic graphs (DAGs)

• A DAG is a directed graph with no (directed) cycles
• Every rooted directed tree is a DAG

• But not every DAG is a rooted directed tree:

• Every DAG is a directed graph
• But not every directed graph is a DAG:
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First graph algorithm!
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Topological Sort

Problem: Given a DAG G=(V,E), output all the vertices in order such that no vertex 
appears before any other vertex that has an edge to it

Example input:

Example output:
142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

…

Disclaimer: Do not use for official advising purposes! 
(Implies that CSE 332 is a pre-req for CSE 312 – not true)
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0

Valid Topological Sorts:
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A First Algorithm for Topological Sort
1. Label (“mark”) each vertex with its in-degree

• Think “write in a field in the vertex”
• Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a) Choose a vertex v labeled with in-degree of 0
b) Output v and conceptually remove it from the graph
c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), 

decrement the in-degree of w
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Example Output:

8/05/2022

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

40

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed?
In-degree 0 0 2 1 2 1 1 2 1 1 1 1



Example Output:
126
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CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

41

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x
In-degree 0 0 2 1 1 2 1 1 2 1 1 1 1



Example Output:
126

142
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CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

42

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x
In-degree 0 0 1 0 1 2 1 1 2 1 1 1 1



Example Output:
126

142
143
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CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

43

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x
In-degree 0 0 0 1 0 2 1 0 1 2 1 0 1 0 1 1



Example Output:
126

142
143
311
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CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

44

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x
In-degree 0 0 0 0 2 1 0 1 0 2 0 0 1 1



Example Output:
126

142
143
311
331
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CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

45

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x
In-degree 0 0 0 0 1 0 0 2 0 0 1 1



Example Output:
126

142
143
311
331
332
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CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

46

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x
In-degree 0 0 0 0 1 0 0 0 2 1 0 0 1 1 0



Example Output:
126

142
143
311
331
332
312
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CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

47

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x
In-degree 0 0 0 0 0 0 0 1 0 0 1 0



Example Output:
126

142
143
311
331
332
312
341
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CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

48

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x
In-degree 0 0 0 0 0 0 0 1 0 0 1 0



Example Output:
126

142
143
311
331
332
312
341

351
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CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

49

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x
In-degree 0 0 0 0 0 0 0 1 0 0 0 1 0 0



Example Output:
126
142
143
311
331
332
312
341
351
333
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CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

50

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x
In-degree 0 0 0 0 0 0 0 0 0 0 0 0



Example Output:
126
142
143

311
331
332
312

341
351
333
352
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CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

51

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x
In-degree 0 0 0 0 0 0 0 0 0 0 0 0



Example Output:
126
142
143
311
331
332
312
341
351
333
352
440
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CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341 CSE 312

CSE 352

MATH
126

CSE 440

52

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x x
In-degree 0 0 0 0 0 0 0 0 0 0 0 0



A couple of things to note

• Needed a vertex with in-degree of 0 to start
• No cycles

• Ties between vertices with in-degrees of 0 can be broken arbitrarily
• Potentially many different correct orders

• What DAGs have exactly 1 topological ordering?
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Topological Sort: Running time?
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labelEachVertexWithItsInDegree();

for(ctr=0; ctr < numVertices; ctr++){
v = findNewVertexOfDegreeZero();
put v next in output
for each w adjacent to v
w.indegree--;

}
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Topological Sort: Running time?

• What is the worst-case running time?
• Initialization O(|V| + |E|) (assuming adjacency list)
• Sum of all find-new-vertex O(|V|2) (because each O(|V|))
• Sum of all decrements O(|E|) (assuming adjacency list)
• So total is O(|V|2 + |E|) – not good for a sparse graph!
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labelEachVertexWithItsInDegree();

for(ctr=0; ctr < numVertices; ctr++){
v = findNewVertexOfDegreeZero();
put v next in output
for each w adjacent to v
w.indegree--;

}



Doing better

The trick is to avoid searching for a zero-degree node every time!
• Keep the “pending” zero-degree nodes in a list, stack, queue, box, 

table, or something
• Order we process them affects output but not correctness or efficiency 

provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty

a) v = dequeue()
b) Output v and remove it from the graph
c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement 

the in-degree of w, if new degree is 0, enqueue it
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Topological Sort(optimized): Running time?
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
v = dequeue();
put v next in output
for each w adjacent to v {
w.indegree--;
if(w.indegree==0) 

enqueue(w);
}

}
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Topological Sort(optimized): Running time?
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
v = dequeue();
put v next in output
for each w adjacent to v {
w.indegree--;
if(w.indegree==0) 

enqueue(w);
}

}

• What is the worst-case running time?
• Initialization: O(|V|+|E|) (assuming adjacency list)
• Sum of all enqueues and dequeues: O(|V|)
• Sum of all decrements: O(|E|) (assuming adjacency list)
• So total is O(|E| + |V|) – much better for sparse graph!
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Topological Sort Uses

• Figuring out how to finish your degree
• Determining the order to compile files using a Makefile
• Determining what assignment you should work on next

• In general, taking a dependency graph and coming up with an 
order of execution 
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