
8/5/22

1

Graphs

Represent data points and the relationships between them.
That’s vague.

Formally:
A graph is a pair: G = (V,E)
V: set of vertices (aka nodes)
E: set of edges

Each edge is a pair of vertices.

8/05/2022 5

Hans

Dara

Nathan

V = {Hans,Dara,Nathan}
E = {(Nathan,Dara),

(Hans,Dara),
(Dara,Hans)}

5

Some math with edges

For a graph G = (V,E):
• |V| = N, is the number of vertices
• |E| = M, is the number of edges
• Minimum?
• Maximum for undirected?
• Maximum for directed?

• If (u,v) Î E
• Then v is a neighbor of u, i.e., v is adjacent to u
• Order matters for directed edges

• u is not adjacent to v unless (v,u) Î E
8/05/2022 19

A

B

C

V = {A, B, C, D}
E = {(C, B),

(A, B),
(B, A)
(C, D)}

D

19

Adjacency Matrix Properties

• Running time to:
• Get a vertex’s out-edges:
• Get a vertex’s in-edges:
• Decide if some edge exists:
• Insert an edge:
• Delete an edge:

• Space requirements:

• Best for sparse or dense graphs?

8/05/2022 23

A

B

C

D

A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F

23

Adjacency List

• Assign each node a number from 0 to |V|-1
• An array of length |V| in which each entry stores a list of

all adjacent vertices (e.g., linked list)

8/05/2022 27

A

B

C

D
A

B

C

D

B /

A /

D B /

/

27

8/5/22

2

8/05/2022

1

3

4

2

0

Valid Topological Sorts:

38

38

Topological Sort: Running time?

8/05/2022

labelEachVertexWithItsInDegree();

for(ctr=0; ctr < numVertices; ctr++){
v = findNewVertexOfDegreeZero();
put v next in output
for each w adjacent to v
w.indegree--;

}

54

54

Topological Sort(optimized): Running time?
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
v = dequeue();
put v next in output
for each w adjacent to v {
w.indegree--;
if(w.indegree==0)

enqueue(w);
}

}

8/05/2022 57

57

