Graphs

Represent data points and the relationships between them.
That's vague.
Formally:
A graph is a pair: $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
V : set of vertices (aka nodes)
E : set of edges
Each edge is a pair of vertices.

$\mathrm{V}=$ \{Hans, Dara, Nathan $\}$
$\mathrm{E}=($ (Nathan, Dara) $)$
(Hans, Dara),
(Hans, Dara),
(Dara, Hans)

Some math with edges

For a graph $G=(\mathrm{V}, \mathrm{E})$:

- $|\mathrm{V}|=\mathrm{N}$, is the number of vertices
- $|E|=M$, is the number of edges
- Minimum?
- Maximum for undirected?

Maximum for directed?

- If $(u, v) \in E$
- Then \mathbf{v} is a neighbor of \mathbf{u}, i.e., \mathbf{v} is adjacent to \mathbf{u}
- Order matters for directed edges $\cdot u$ is not adjacent to v unless $(v, u) \in E$

19

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges

Get a vertex's in-edges:

- Decide if some edge exists.
- Insert an edge:
- Delete an edge:
- Space requirements:
- Best for sparse or dense graphs?

8,05/2022

Adjacency List

- Assign each node a number from 0 to $|\mathrm{V}|-1$
- An array of length |V| in which each entry stores a list of all adjacent vertices (e.g., linked list)

Valid Topological Sorts:

38

Topological Sort: Running time?
labelEachVertexWithItsInDegree();
for (ctr=0; ctr < numvertices; ctr++) $\mathrm{v}=$ findNewVertexOfDegreeZero()
put v next in output
for each wadja
,
de
)

