
CSE 332: Data Structures & Parallelism
Lecture 17: Race Conditions & Deadlock

Arthur Liu
Summer 2022

8/03/2022 1

The Concurrency Part of this class

• Introduction of Parallelism Ideas
• Java’s Thread
• ForkJoin Library

• General Parallelism Algorithms
• Reduce, Map
• Analysis (span, work)

• Clever Parallelism Ideas
• Parallel Prefix
• Parallel Sorts

• Synchronization
• The need for locks (Concurrency)

• Other Synchronization Issues
• Race Conditions: Data Races & Bad Interleavings, Deadlock

8/03/2022 2

Race Conditions

A race condition occurs when the computation result depends on
scheduling (how threads are interleaved)

• If T1 and T2 happened to get scheduled in a certain way, things go wrong
• We, as programmers, cannot control scheduling of threads;
• Thus we need to write programs that work independent of scheduling

Race conditions are bugs that exist only due to concurrency
• No interleaved scheduling problems with only 1 thread!

Typically, problem is that some intermediate state can be seen by
another thread; screws up other thread

8/03/2022 3

Race Conditions:
Data Races vs. Bad Interleavings

We will make a big distinction between:

data races and bad interleavings

8/03/2022 4

Data Races

A data race is a specific type of race condition where there is the
possibility for either:

1. Two different threads to write a variable at the same time
2. One thread writes a variable while another thread reads the variable

8/03/2022 5

Stack Example (pseudocode)
class Stack<E> {

private E[] array = (E[])new Object[SIZE];
private int index = -1;
boolean isEmpty() {
return index==-1;

}
void push(E val) {
array[++index] = val;

}
E pop() {
if(isEmpty())
throw new StackEmptyException();

return array[index--];
}

}

8/03/2022 6

Stack Example (pseudocode)
class Stack<E> {

private E[] array = (E[])new Object[SIZE];
private int index = -1;
synchronized boolean isEmpty() {
return index==-1;

}
synchronized void push(E val) {

array[++index] = val;
}
synchronized E pop() {

if(isEmpty())
throw new StackEmptyException();

return array[index--];
}

}

8/03/2022 7

Example of a Race Condition,
but not a Data Race

class Stack<E> {
… // state used by isEmpty, push, pop
synchronized boolean isEmpty() { … }
synchronized void push(E val) { … }
synchronized E pop() {

if(isEmpty())
throw new StackEmptyException();

…
}
E peek() { // this is wrong

E ans = pop();
push(ans);
return ans;

}
}

8/03/2022 8

Problems with peek

• peek has no overall effect on the shared data
• It is a “reader” not a “writer”
• State should be the same after it executes as before

• But the way it is implemented creates an inconsistent
intermediate state
• Calls to push and pop are synchronized

• So there are no data races on the underlying array/index
• There is still a race condition though

• This intermediate state should not be exposed
• Leads to several bad interleavings

8/03/2022

E peek() {
E ans = pop();
push(ans);
return ans;

}

10

Example 1: peek and isEmpty

• Property we want: If there has been a push (and no pop), then
isEmpty should return false

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)
boolean b = isEmpty()

Ti
m

e

Thread 2 (push + isEmpty)Thread 1 (peek)

8/03/2022 11

Example 1: peek and isEmpty

• Property we want: If there has been a push (and no pop), then
isEmpty should return false

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)
boolean b = isEmpty()

Ti
m

e

Thread 1 (peek)

8/03/2022 12

Thread 2 (push + isEmpty)

Example 2: peek and push

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)
push(y)
E e = pop()

Ti
m

e

Thread 1 (peek)

8/03/2022 13

Thread 2 (two pushes, pop)

Example 2: peek and push

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)
push(y)
E e = pop()

Ti
m

e

Thread 1 (peek)

8/03/2022 14

Thread 2 (two pushes, pop)

Example 2.5: peek and pop

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

Ti
m

e

Thread 1 (peek)
push(x)
push(y)
E e = pop()

8/03/2022 15

Thread 2 (two pushes, pop)

Example 4: peek and peek

• Property we want: peek doesn’t throw an exception unless stack is empty

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

Ti
m

e

Thread 2 (peek)

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)

8/03/2022 16

Example 4: peek and peek

• Property we want: peek doesn’t throw an exception unless stack is empty

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

Ti
m

e

Thread 2 (peek)

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)

8/03/2022 17

The fix

• In short, peek needs synchronization to disallow interleavings
• The key is to make a larger critical section

• That intermediate state of peek needs to be protected
• Use re-entrant locks; will allow calls to push and pop
• Code on right is example of a peek external to the Stack class

class Stack<E> {
…
synchronized E peek(){

E ans = pop();
push(ans);
return ans;

}
}

class C {
<E> E myPeek(Stack<E> s){

synchronized (s) {
E ans = s.pop();
s.push(ans);
return ans;

}
}

}

8/03/2022 18

How you might have written peek
class Stack<E> {

private E[] array = (E[])new Object[SIZE];
private int index = -1;
boolean isEmpty() { // unsynchronized: wrong?!
return index==-1;

}
synchronized void push(E val) {

array[++index] = val;
}
synchronized E pop() {

return array[index--];
}
E peek() { // unsynchronized: wrong!
return array[index];

}
}

8/03/2022 19

The wrong “fix”

• Focus previously: problems from (a weird) peek doing writes that lead
to an incorrect intermediate state (bad interleavings)

• Tempting but wrong: If an implementation of peek (or isEmpty)
does not write anything, then maybe we can skip the synchronization?

• Does not work due to data races with push and pop…

8/03/2022 20

Why wrong?

• It looks like isEmpty and peek can “get away with this” since push and
pop adjust the state “in one tiny step”

• But this code is still wrong and depends on language-implementation details
you cannot assume
• Even “tiny steps” may require multiple steps in the implementation:
array[++index] = val probably takes at least two steps

• Code has a data race, allowing very strange behavior
• Compiler optimizations may break it in ways you had not anticipated
• See Grossman notes for more details

• Moral: Do not introduce a data race, even if every interleaving you can think
of is correct

8/03/2022 21

Recap: the distinction

The term “race condition” can refer to two different things resulting from
lack of synchronization:

1. Data races: Simultaneous read/write or write/write of the same
memory location

2. Bad interleavings: Exposes bad intermediate state to other threads,
leads to behavior we find incorrect
• “Bad” depends on your specification

8/03/2022 22

Getting it right

Avoiding race conditions on shared resources is difficult
• What ‘seems fine’ in a sequential world can get you into trouble when

multiple threads are involved
• Decades of bugs have led to some conventional wisdom:

general techniques that are known to work

Next, we discuss this conventional wisdom!
• Parts paraphrased from “Java Concurrency in Practice”

• Chapter 2 (rest of book more advanced)
• But none of this is specific to Java or a particular book!
• May be hard to appreciate in beginning, but come back to these guidelines

over the years!

8/03/2022 23

Shared-Memory, Concurrent Programming

Conventional Wisdom

See Section 8 in Grossman Notes

248/03/2022

3 choices
For every memory location (e.g., object field) in your program, you must obey

at least one of the following:
1. Thread-local: Do not use the location in > 1 thread
2. Immutable: Do not write to the memory location
3. Shared-and-mutable: Use synchronization to control access to the

location

all memory thread-local
memory immutable

memory

need
synchronization

8/03/2022 25

1. Thread-local

Whenever possible, do not share resources

• Easier to have each thread have its own thread-local copy of a resource than to have one
with shared updates

• This is correct only if threads do not need to communicate through the resource
• That is, multiple copies are a correct approach
• Example: Random objects

• Note: Because each call-stack is thread-local, never need to synchronize on local variables

In typical concurrent programs, the vast majority of objects should be thread-
local: shared-memory should be rare – minimize it

8/03/2022 26

2. Immutable

Whenever possible, do not update objects
• Make new objects instead!

• One of the key tenets of functional programming (see CSE 341)
• Generally helpful to avoid side-effects
• Much more helpful in a concurrent setting

• If a location is only read, never written, then no synchronization is necessary!
• Simultaneous reads are not races and not a problem

In practice, programmers usually over-use mutation – minimize it

8/03/2022 27

3. The rest: Keep it synchronized

After minimizing the amount of memory that is (1) thread-shared and
(2) mutable, we need guidelines for how to use locks to keep other data
consistent

Guideline #0: No data races
• Never allow two threads to read/write or write/write the same location at

the same time (use locks!)
• Even if it ‘seems safe’

Necessary:
a Java or C program with a data race is by definition wrong
But Not sufficient: Our peek example had no data races, and it’s still wrong…

8/03/2022 28

Consistent Locking

Guideline #1: Use consistent locking
• Every location needing synchronization has a lock that is always held

when reading or writing the location

• We say the lock guards the location

• The same lock can (and often should) guard multiple locations (ex.
multiple fields in a class)

• Clearly document the guard for each location

• In Java, often the guard is the object containing the location
• this inside the object’s methods
• But also often guard a larger structure with one lock to ensure mutual exclusion

on the structure

8/03/2022 29

Lock granularity
Coarse-grained: Fewer locks, i.e., more objects per lock

• Example: One lock for entire data structure (e.g., array)
• Example: One lock for all bank accounts

Fine-grained: More locks, i.e., fewer objects per lock
• Example: One lock per data element (e.g., array index)
• Example: One lock per bank account

“Coarse-grained vs. fine-grained” is really a continuum

…

…

8/03/2022 31

pollev.com/artliu

Separate Chaining Hashtable
• Coarse-grained: One lock for entire hashtable
• Fine-grained: One lock for each bucket
Which supports more concurrency for insert and lookup?

Which makes implementing resize easier?
• How would you do it?

If a hashtable has a numElements field, maintaining it will destroy the benefits
of using separate locks for each bucket, why?

8/03/2022 32

Trade-offs
Coarse-grained advantages:

• Simpler to implement
• Faster/easier to implement operations that access multiple locations

(because all guarded by the same lock)
• Much easier for operations that modify data-structure shape

Fine-grained advantages:
• More simultaneous access (performance when coarse-grained would

lead to unnecessary blocking)
• Can make multi-node operations more difficult: say, rotations in an

AVL tree

Guideline #2: Start with coarse-grained (simpler) and move to
fine-grained (performance) only if contention on the coarser
locks becomes an issue.

8/03/2022 34

Critical-section granularity

A second, orthogonal granularity issue is critical-section size
• How much work to do while holding lock(s)?

If critical sections run for too long?

If critical sections are too short?

8/03/2022 35

Critical-section granularity

A second, orthogonal granularity issue is critical-section size
• How much work to do while holding lock(s)?

If critical sections run for too long:
• Performance loss because other threads are blocked

If critical sections are too short:
• Bugs because you broke up something where other threads should not be able to see

intermediate state

Guideline #3: Don’t do expensive computations or I/O in critical sections, but
also don’t introduce race conditions; keep it as small as possible but still be
correct

8/03/2022 36

Example 1: Critical-section granularity
Suppose we want to change the value for a key in a hashtable without
removing it from the table

• Assume lock guards the whole table
• expensive() takes in the old value, and computes a new one, but takes a

long time

synchronized(lock) {
v1 = table.lookup(k);
v2 = expensive(v1);
table.remove(k);
table.insert(k,v2);

}

8/03/2022 37

Example 2: Critical-section granularity
Suppose we want to change the value for a key in a hashtable without
removing it from the table

• Assume lock guards the whole table

synchronized(lock) {
v1 = table.lookup(k);

}
v2 = expensive(v1);
synchronized(lock) {
table.remove(k);
table.insert(k,v2);

}

8/03/2022 38

Atomicity

An operation is atomic if no other thread can see it partly executed
• Atomic as in “appears indivisible”
• Typically want ADT operations atomic, even to other threads running

operations on the same ADT

Guideline #4: Think in terms of what operations need to be atomic
• Make critical sections just long enough to preserve atomicity
• Then design the locking protocol to implement the critical sections

correctly

That is: Think about atomicity first and locks second

8/03/2022 42

Don’t roll your own

• In “real life”, it is unusual to have to write your own data structure from
scratch
• Implementations provided in standard libraries
• Point of CSE332 is to understand the key trade-offs, abstractions, and analysis

of such implementations

• Especially true for concurrent data structures
• Far too difficult to provide fine-grained synchronization without race conditions
• Standard thread-safe libraries like ConcurrentHashMap written by world

experts

Guideline #5: Use built-in libraries whenever they meet your needs

8/03/2022 43

Deadlock

8/03/2022 44

Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

class BankAccount {
…
synchronized void withdraw(int amt) {…}
synchronized void deposit(int amt) {…}
synchronized void transferTo(int amt, BankAccount a) {

this.withdraw(amt);
a.deposit(amt);

}
}

Potential problems?

8/03/2022 45

The Deadlock

acquire lock for x
do withdraw from x

block on lock for y

acquire lock for y
do withdraw from y

block on lock for x

Thread 1: x.transferTo(1,y)
Ti

m
e

Suppose x and y are static fields holding accounts

Thread 2: y.transferTo(1,x)

8/03/2022 47

Another presentation: The Dining Philosophers
• 5 philosophers go out to dinner together at an Italian restaurant
• Sit at a round table; one fork per setting
• When the spaghetti comes, each philosopher proceeds to grab their

right fork, then their left fork, then eats
• ‘Locking’ for each fork results in a deadlock

8/03/2022 48

Deadlock, in general

A deadlock occurs when we have a cycle of dependencies
ie: there are threads T1, …, Tn such that:
• Thread Ti is waiting for a resource held by Ti+1 and
• Tn is waiting for a resource held by T1

Deadlock avoidance in programming amounts to techniques to
ensure a cycle can never arise

8/03/2022 49

Back to our example

Options for deadlock-proof transfer:

1. Make a smaller critical section: transferTo not synchronized
• Exposes intermediate state after withdraw before deposit
• May be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for all accounts allowing transfers
between them
• Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number and always acquire locks in the
same order
• Entire program should obey this order to avoid cycles
• Code acquiring only one lock can ignore the order

8/03/2022 50

Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

class BankAccount {
…
synchronized void withdraw(int amt) {…}
synchronized void deposit(int amt) {…}
synchronized void transferTo(int amt, BankAccount a) {

this.withdraw(amt);
a.deposit(amt);

}
}

Potential problems?

8/03/2022 51

Ordering locks
class BankAccount {
…
private int acctNumber; // must be unique
void transferTo(int amt, BankAccount a) {

if(this.acctNumber < a.acctNumber)
synchronized(this) {
synchronized(a) {

this.withdraw(amt);
a.deposit(amt);

}}
else

synchronized(a) {
synchronized(this) {

this.withdraw(amt);
a.deposit(amt);

}}
}

}
8/03/2022 52

Perspective

• Code like account-transfer are more sneaky examples of deadlock

• Easier case: different types of objects
• Can document a fixed order among types
• Example: “When moving an item from the hashtable to the work queue, never try to

acquire the queue lock while holding the hashtable lock”

• Easier case: objects are in an acyclic structure
• Can use the data structure to determine a fixed order
• Example: “If holding a tree node’s lock, do not acquire other tree nodes’ locks unless

they are children in the tree”

8/03/2022 55

Concurrency summary

• Concurrent programming allows multiple threads to access shared
resources (e.g. hash table, work queue)
• Introduces new kinds of bugs:

• Race Conditions { Data races and Bad Interleavings }
• Critical sections too small
• Critical sections use wrong locks
• Deadlocks

• Requires synchronization
• Locks for mutual exclusion (common, various flavors)
• Other Synchronization Primitives: (see Grossman notes)

• Reader/Writer Locks
• Condition variables for signaling others

• Guidelines for correct use help avoid common pitfalls

8/03/2022 56

