
CSE 332: Data Structures & Parallelism
Lecture 16: Concurrency & Mutual

Exclusion

Arthur Liu
Summer 2022

8/01/2022 1

Announcements

• What do you need from parallel sorting?
• Know that you can speed up merge and quick sort SIGNIFICANTLY

if you have access to many processors (and existing auxiliary
arrays)
• Understand how they work (e.g. “you can partition with two packs”)
• Understand how to recreate the recurrence or explain why a

recurrence describes a modified sort.

8/01/2022 2

The Concurrency Part of this class

• Introduction of Parallelism Ideas
• Java’s Thread
• ForkJoin Library

• General Parallelism Algorithms
• Reduce, Map
• Analysis (span, work)

• Clever Parallelism Ideas
• Parallel Prefix
• Parallel Sorts

• Synchronization
• The need for locks (Concurrency)

• Other Synchronization Issues
• Race Conditions: Data Races & Bad Interleavings

8/01/2022 3

Sharing Resources

So far we’ve been writing parallel algorithms that don’t share
resources.

Fork-join algorithms all had a simple structure
• Each thread had memory only it accessed
• Results of one thread not accessed until joined.
• The structure of the code ensured sharing didn’t go wrong.

Can’t always use the same strategy when memory overlaps
• Thread doing independent tasks on same resources.

8/01/2022 4

Parallel Code

PC

local
vars

PC

local
vars

PC

local
vars

Heap memory

Objects

8/01/2022 5

Why Concurrency?

If we’re not using them to solve the same big problem faster, why threads?

Threads useful for:
• Code responsiveness

• Example: Respond to GUI events in one thread while another thread is performing an
expensive computation

• Processor utilization (mask I/O latency)
• If 1 thread “goes to disk,” have something else to do

• Failure isolation
• Convenient structure if want to interleave multiple tasks and do not want an exception in

one to stop the other
8/01/2022 6

Concurrency

Correctly and efficiently managing access to shared resources from
multiple possibly-simultaneous clients!

Instead of planning (ex: splitting up a task into multiple pieces), we need to
coordinate how we use the same resources! (We might not be even doing the
same thing!)

Even correct concurrent applications are usually highly non-deterministic
• how threads are scheduled affects what operations happen first
• non-repeatability complicates testing and debugging
• (Unproven) Magic property where code works when testing but fails during demo…

8/01/2022 7

Sharing a Queue….

• Imagine 2 threads, running at the same time,
• both with access to a shared linked-list based queue (initially

empty)

enqueue(x) {
if (back == null) {

back = new Node(x);
front = back;

}
else {

back.next = new Node(x);
back = back.next;

}
}

8/01/2022 8

Bad Interleaving

enqueue(x) {
if (back == null) {

back = new Node(x);
front = back;

}
…

}

enqueue(x) {

if (back == null) {

back = new Node(x);
front = back;

}
…

}

Any interleaving is possible!

Ti
m

e

8/01/2022 9

Canonical example

Correct code in a single-threaded world
class BankAccount {

private int balance = 0;
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }

void withdraw(int amount) {
int b = getBalance();
if (amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);

}
… // other operations like deposit, etc.

}

8/01/2022 10

Activity: What is the balance at the end?

class BankAccount {
private int balance = 0;
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }

void withdraw(int amount) {
int b = getBalance();
if (amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);

}
… // other operations like deposit, etc.

}

8/01/2022
x.withdraw(100);

Thread 1
x.withdraw(75);

Thread 2

Two threads run: one withdrawing 100, another withdrawing 75, (Assume initial balance = 150)

pollev.com/artliu

11

Activity: What is the balance at the end?

void withdraw(int amount) {

int b = getBalance();

if (amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

}

void withdraw(int amount) {

int b = getBalance();

if (amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

}

x.withdraw(100);
Thread 1

x.withdraw(75);
Thread 2

8/01/2022 12

Activity: A “good” execution is also possible
Interleaved withdraw() calls on the same account

• Assume initial balance == 150
• This should cause a WithdrawTooLarge exception

int b = getBalance();
if (amount > b)
throw new …;

setBalance(b – amount);

int b = getBalance();
if (amount > b)

throw new …;
setBalance(b – amount);

Thread 1: withdraw(100) Thread 2: withdraw(75)

Ti
m

e

8/01/2022 13

Activity: A bad interleaving
Interleaved withdraw() calls on the same account

• Assume initial balance == 150
• This should cause a WithdrawTooLarge exception

int b = getBalance();
if (amount > b)
throw new …;

setBalance(b – amount);

int b = getBalance();
if (amount > b)

throw new …;
setBalance(b – amount);

Thread 1: withdraw(100) Thread 2: withdraw(75)

Ti
m

e

8/01/2022 14

Bad Interleavings

• What’s the problem?
• We stored the result of balance locally, but another thread

overwrote it after we stored it.

• The value became stale.

8/01/2022 15

A Principle

• Principle: don’t let a variable that might be written become stale.
• Ask for it again right before you use it

void withdraw(int amount){

int b = getBalance();

if(amount > getBalance())

throw new …;

setBalance(getBalance()-amount);

}

8/01/2022 16

A Principle

• Principle: don’t let a variable that might be written become stale.
• Ask for it again right before you use it

void withdraw(int amount){

int b = getBalance();

if(amount > getBalance())

throw new …;

setBalance(getBalance()-amount);

}
That’s not a real concurrency principle. It doesn’t solve anything.

8/01/2022 17

Incorrect “fix”
It is tempting and almost always wrong to fix a bad interleaving by
rearranging or repeating operations, such as:

void withdraw(int amount) {
if (amount > getBalance())
throw new WithdrawTooLargeException();

// maybe balance changed
setBalance(getBalance() – amount);

}

This fixes nothing!
• Narrows the problem by one statement
• (Not even that since the compiler could turn it back into the old version

because you didn’t indicate need to synchronize)
• And now a negative balance is possible – why?

8/01/2022 18

There’s still a bad interleaving, find one

void withdraw(int amount) {

int b = getBalance();

if (amount > getBalance())

throw new WithdrawTooLargeException();

setBalance(getBalance() – amount);

}

void withdraw(int amount) {

int b = getBalance();

if (amount > getBalance())

throw new WithdrawTooLargeException();

setBalance(getBalance() – amount);

}

x.withdraw(100);
Thread 1

x.withdraw(75);
Thread 2

8/01/2022 19

There’s still a bad interleaving, find one

void withdraw(int amount) {
int b = getBalance();
if (amount > getBalance())
throw new WithdrawTooLargeException();

setBalance(getBalance() – amount);
}

void withdraw(int amount) {

int b = getBalance();
if (amount > getBalance())
throw new WithdrawTooLargeException();

setBalance(getBalance() – amount);
}

x.withdraw(100);
Thread 1

x.withdraw(75);
Thread 2

In this version, we can have negative balances without throwing the exception!
8/01/2022 20

There’s still a bad interleaving, find one

void withdraw(int amount) {
int b = getBalance();
if (amount > getBalance())
throw new WithdrawTooLargeException();

getBalance() – amount

setBalance(<saved computation>);
}

void withdraw(int amount) {

int b = getBalance();
if (amount > getBalance())
throw new WithdrawTooLargeException();

getBalance() – amount

setBalance(<saved computation>);
}

x.withdraw(100);
Thread 1

x.withdraw(75);
Thread 2

8/01/2022 21

A Real Principle

Mutual Exclusion (aka Mutex, aka Locks)
Rewrite our code so at most one thread can use a resource at a time

All other threads must wait.

We need to identify the critical section
Portion of the code only a single thread should be allowed to be in at once.

This MUST be done by the programmer.
But you need language primitives to do it!

8/01/2022 22

Implementing our own Mutex?
Idea: Maybe try using a Boolean flag?

void withdraw(int amount) {

int b = getBalance();
if (amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);

}

// deposit would spin on same boolean

8/01/2022 23

Why is this Wrong?
Why can’t we implement our own mutual-exclusion protocol?

private boolean busy = false;

void withdraw(int amount) {
while (busy) { /* “spin-wait” */ }
busy = true;
int b = getBalance();
if (amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);
busy = false;

}

// deposit would spin on same boolean

8/01/2022 24

Still just moved the problem!

while (busy) { }

busy = true;

int b = getBalance();

if (amount > b)
throw new …;

setBalance(b – amount);

while (busy) { }

busy = true;

int b = getBalance();
if (amount > b)

throw new …;
setBalance(b – amount);

Thread 1 Thread 2

Ti
m

e

“Lost withdraw” –
unhappy bank

Busy is initially = false

8/01/2022 25

Locks

• We can still have a bad interleaving.
• If two threads see busy = false and get past the loop simultaneously.

• We need a single operation that
• Checks if busy is false
• AND sets it to true if it is
• AND where no other thread can interrupt us.

• An operation is atomic if no other threads can interrupt it/interleave with it.

8/01/2022 26

What we need
There are many ways out of this conundrum,

but we need help from the programming language…

One solution: Mutual-Exclusion Locks (aka Mutex, or just Lock)
• Still on a conceptual level at the moment, ‘Lock’ is not a Java class (though Java’s approach is similar)

We will define Lock as an ADT with operations:
• new: make a new lock, initially “not held”
• acquire: blocks if this lock is already currently “held”

• Once “not held”, makes lock “held” [all at once!]
• Checking & setting happen together, and cannot be interrupted
• Fixes problem we saw before!!

• release: makes this lock “not held”
• If >= 1 threads are blocked on it, exactly 1 will acquire it

8/01/2022 27

Almost-correct pseudocode

class BankAccount {
private int balance = 0;
private Lock lk = new Lock();
…
void withdraw(int amount) {

lk.acquire(); // may block
int b = getBalance();
if (amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);
lk.release();

}
// deposit would also acquire/release lk

}

8/01/2022

Note: ‘Lock’ is not an
actual Java class

28

Using Locks

Questions:
1. What is the critical section (i.e. the part of the code protected by the lock)?
2. How many locks should we have

a) One per BankAccount object?
b) Two per BankAccount object (one in withdraw and a different lock in deposit)?
c) One (static) one for the entire class (shared by all BankAccount objects)?

3. There is a subtle bug in withdraw(), what is it?
4. Do we need locks for

a) getBalance()?
b) setBalance()?
For the purposes of this question, assume those methods are public.

8/01/2022

pollev.com/artliu

29

Some mistakes
2.b) Incorrect: Use different locks for withdraw and deposit

• Mutual exclusion works only when using same lock
• balance field is the shared resource being protected, not the methods themselves

2.c) Poor performance: Use same lock for every bank account
• Not technically incorrect, but…
• No simultaneous operations on different accounts

8/01/2022 30

Using Locks

3. The bug in withdraw:
When you throw an exception, you still hold onto the lock!

• You could release the lock before throwing the exception.
Or use try{} finally{} blocks
try { critical section }

finally { lk.release() }

if (amount > b) {
lk.release(); // hard to remember!
throw new WithdrawTooLargeException();

}
8/01/2022 31

Re-entrant Locks

4. Do we need to lock setBalance()
If it’s public, yes.

But now we have a problem:
withdraw will acquire the lock,
Then call setBalance()…
Which needs the same lock

8/01/2022 32

Re-entrant lock idea

A re-entrant lock (a.k.a. recursive lock)

• The idea: Once acquired, the lock is held by the Thread, and subsequent
calls to acquire in that Thread won’t block

• Result: withdraw can acquire the lock, and then call setBalance,
which can also acquire the lock
• Because they’re in the same thread & it’s a re-entrant lock, the inner acquire

won’t block!!

8/01/2022 33

Re-entrant locks work
This simple code works fine provided lk is a
reentrant lock
• Okay to call setBalance directly
• Okay to call withdraw (won’t block forever)

Lock needs to know which release call is the
“real” release, and which one is just the end of an
inner method call.

Intuition: have a counter. Increment it when you “re-
acquire” the lock, decrement when you release.
Until releasing on 0 then really release.
Take an operating systems course to learn more.

int setBalance(int x) {
lk.acquire();
balance = x;
lk.release();

}

void withdraw(int amount) {
lk.acquire();
…
setBalance(b – amount);
lk.release();

}

8/01/2022 34

Real Java Locks

java.util.concurrent.locks.ReentrantLock

• Has methods lock() and unlock()
• As described above, it is conceptually owned by the Thread, and shared within

that thread
• Important to guarantee that lock is always released!!!
• Recommend something like this:

myLock.lock();

try { // method body }

finally { myLock.unlock(); }

• Despite what happens in ‘try’, the code in finally will execute afterwards

8/01/2022 35

synchronized: A Java convenience
Java has built-in support for re-entrant locks
• You can use the synchronized statement as an alternative to

declaring a ReentrantLock

synchronized (expression) {
critical section

}

1. expression must be an object
• Every object (but not primitive types) “is a lock” in Java

2. Acquires the lock, blocking if necessary
• “If you get past the {, you have the lock”

3. Releases the lock “at the matching }”
• Even if control leaves due to throw, return, etc.
• So impossible to forget to release the lock!

8/01/2022 36

Java version #1 (correct but can be improved)
class BankAccount {

private int balance = 0;
private Object lk = new Object();

int getBalance(){ synchronized(lk){ return balance; } }
void setBalance(int x){ synchronized(lk){ balance = x; } }

void withdraw(int amount) {
synchronized (lk) {
int b = getBalance();
if (amount > b)
throw …

setBalance(b – amount);
}

}
// deposit would also use synchronized(lk)

}
8/01/2022 37

Improving the Java

• As written, the lock is private
• Might seem like a good idea
• But also prevents code in other classes from writing operations that

synchronize with the account operations

• More idiomatic is to synchronize on this…
• Also more convenient: no need to have an extra object!

8/01/2022 38

Java version #2
class BankAccount {

private int balance = 0;

int getBalance(){ synchronized(this){ return balance; } }
void setBalance(int x){ synchronized(this){ balance = x; } }

void withdraw(int amount) {
synchronized (this) {

int b = getBalance();
if(amount > b)
throw …

setBalance(b – amount);
}

}
// deposit would also use synchronized(this)

}

8/01/2022 39

Syntactic sugar

Version #2 is slightly poor style because there is a shorter way to say
the same thing:

Putting synchronized before a method declaration means the
entire method body is surrounded by

synchronized(this){…}

Therefore, version #3 (next slide) means exactly the same thing as
version #2 but is more concise

8/01/2022 40

Java version #3 (final version)

class BankAccount {
private int balance = 0;

synchronized int getBalance() { return balance; }
synchronized void setBalance(int x) { balance = x; }

synchronized void withdraw(int amount) {
int b = getBalance();
if(amount > b)

throw …
setBalance(b – amount);

}
// deposit would also use synchronized

}

8/01/2022 41

More Java notes

• Class java.util.concurrent.locks.ReentrantLock
works much more like our pseudocode
• Often use try { … } finally { … } to avoid forgetting to release

the lock if there’s an exception

• Also library and/or language support for readers/writer locks and
condition variables (see Grossman notes)

• Java provides many other features and details. See, for example:
• Chapter 14 of CoreJava, Volume 1 by Horstmann/Cornell
• Java Concurrency in Practice by Goetz et al

8/01/2022 42

