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The Parallelism Part of this class

• Introduction of Parallelism Ideas
• Java’s Thread
• ForkJoin Library

• General Parallelism Algorithms
• Reduce, Map
• Analysis (span, work)

• Clever Parallelism Ideas
• Parallel Prefix
• Parallel Sorts

• Synchronization
• The need for locks (Concurrency)

• Other Synchronization Issues
• Race Conditions: Data Races & Bad Interleavings
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The prefix-sum problem
Given int[] input, produce int[] output where:

output[i] = input[0]+input[1]+…+input[i]

Sequential can be a CSE142 exam problem:

int[] prefix_sum(int[] input){
int[] output = new int[input.length];
output[0] = input[0];
for(int i=1; i < input.length; i++)

output[i] = output[i-1]+input[i];
return output;

}

input
output

6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76
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Parallel prefix-sum

• The parallel-prefix algorithm does two passes
• Each pass has O(n) work and O(log n) span
• So in total there is O(n) work and O(log n) span
• So like with array summing, parallelism is n/log n

• An exponential speedup

• First pass builds a tree bottom-up: the “up” pass

• Second pass traverses the tree top-down: the “down” pass
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Local bragging

Historical note:
• Original algorithm due to R. Ladner and M. Fischer at UW in 1977
• Richard Ladner joined the UW faculty in 1971 and hasn’t left

1968? recent
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The algorithm, part 1
1. Propagate ‘sum’ up: Build a binary tree where 

• Root has sum of input[0]..input[n-1]
• Each node has sum of input[lo]..input[hi-1]
• Build up from leaves; parent.sum=left.sum+right.sum

• A leaf’s sum is just it’s value; input[i]

This is an easy fork-join computation: same as sum algorithm of array but this 
time store answers in tree as we move up
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input

output

6 4 16 10 16 14 2 8

range  0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r  0,1
s  
f

r  1,2
s  
f

r  2,3
s  
f

r  3,4
s  
f

r  4,5
s  
f

r  5,6
s  
f

r  6,7
s  
f

r  7.8
s  
f

The (completely non-obvious) idea:
Do an initial pass to gather information, 
enabling us to do a second pass to get the 
answer
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First pass (animated)

input

output

6 4 16 10 16 14 2 8

range  0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r  0,1
s  
f

r  1,2
s  
f

r  2,3
s  
f

r  3,4
s  
f

r  4,5
s  
f

r  5,6
s  
f

r  6,7
s  
f

r  7.8
s  
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
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The algorithm, part 2
2. Propagate ‘fromleft’ down:

• Root given a fromLeft of 0
• Node takes its fromLeft value and

• Passes its left child the same fromLeft
• Passes its right child its fromLeft plus its left child’s sum (as stored in part 1)

• At the leaf for array position i, output[i]=fromLeft+input[i]

This is also an easy fork-join computation: traverse the tree built in step 1 
and fill in the fromLeft field using saved information

• Invariant: fromLeft is sum of elements left of the node’s range
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Second pass

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range  0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r  0,1
s  
f

r  1,2
s  
f

r  2,3
s  
f

r  3,4
s  
f

r  4,5
s  
f

r  5,6
s  
f

r  6,7
s  
f

r  7.8
s  
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36

Using ‘sum’, get the sum of 
everything to the left of this 
range (call it ‘fromleft’); 
propagate down from root
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Analysis of Algorithm
Original boring 142 algorithm: O(n)

Analysis of our fancy prefix sum algorithm:
Analysis of first step:

Analysis of second step:

Total for algorithm:
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input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range  0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r  0,1
s  
f

r  1,2
s  
f

r  2,3
s  
f

r  3,4
s  
f

r  4,5
s  
f

r  5,6
s  
f

r  6,7
s  
f

r  7.8
s  
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36



Analysis of Algorithm
Original boring 142 algorithm: O(n)

Analysis of our fancy prefix sum algorithm:
Analysis of first step:
O(n) work, O(log n) span
Analysis of second step:
O(n) work, O(log n) span

Total for algorithm:
O(n) work, O(log n) span
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input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range  0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r  0,1
s  
f

r  1,2
s  
f

r  2,3
s  
f

r  3,4
s  
f

r  4,5
s  
f

r  5,6
s  
f

r  6,7
s  
f

r  7.8
s  
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36



Sequential cut-off

Optimizing: Adding a sequential cut-off isn’t too bad:

• Step One: Propagating Up the sums: 
• Have a leaf node just hold the sum of a range of values 

instead of just one array value (Sequentially compute 
sum for that range)

• The tree itself will be shallower

• Step Two: Propagating Down the fromLefts: 
• At leaf, compute prefix sum over its [lo,hi):

On the topic of optimization, do we need to actually 
have a tree?
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input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range  0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r  0,1
s  
f

r  1,2
s  
f

r  2,3
s  
f

r  3,4
s  
f

r  4,5
s  
f

r  5,6
s  
f

r  6,7
s  
f

r  7.8
s  
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36

1, 1, 2

7,8,10 



Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern,
prefix-sum illustrates a pattern that arises in many, many problems

• Minimum, maximum of all elements
• Is there an element satisfying some property?

• Count of elements satisfying some property
• This last one is perfect for an efficient parallel pack…
• Perfect for building on top of the “parallel prefix trick”
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Pack (think “Filter”)
Given an array input, produce an array output containing only
elements such that f(element) is true

Example:  input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

f: “is element > 10”

output [17, 11, 13, 19, 24]

Parallelizable?
• Determining whether an element belongs in the output is easy
• But determining where an element belongs in the output is hard; seems to 

depend on previous results….
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Solution! Parallel Pack = 
parallel map + parallel prefix + parallel map
1. Parallel map to compute a bit-vector for true elements:

input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [ 1, 0, 0, 0,  1, 0,  1,  1, 0,  1]

2. Parallel-prefix sum on the bit-vector:
bitsum [ 1, 1, 1, 1,  2, 2,  3,  4, 4,  5]

3. Parallel map to produce the output:
output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){

if(bits[i]==1)
output[bitsum[i]-1] = input[i];

}

In this example,
Filter =
element > 10
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Pack comments

• First two steps can be combined into one pass
• Just using a different base case for the prefix sum
• No effect on asymptotic complexity

• Can also combine third step into the down pass of the prefix sum
• Again no effect on asymptotic complexity

• Analysis: O(n) work, O(log n) span 
• 2 or 3 passes, but 3 is a constant J

• Parallelized packs will help us parallelize quicksort…
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The Parallelism Part of this class

• Introduction of Parallelism Ideas
• Java’s Thread
• ForkJoin Library

• General Parallelism Algorithms
• Reduce, Map
• Analysis (span, work)

• Clever Parallelism Ideas
• Parallel Prefix
• Parallel Sorts (Next)

• Synchronization
• The need for locks (Concurrency)

• Other Synchronization Issues
• Race Conditions: Data Races & Bad Interleavings
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Quick Quick Sort Analysis Note

• For all of our quick sort analysis, we’ll do best case.
• The average case is the same as best case.

• Worst case is still going to be the same (bad) Θ 𝑛! with 
parallelism or not. 
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Sequential Quicksort review
Recall quicksort was sequential, in-place, expected time O(n log n)

Best / expected case work
1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C                        2T(n/2)

Recurrence (assuming a good pivot):

Run-time:
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Parallel Quicksort VERSION 1
Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C                        2T(n/2)

Idea: Do the two recursive calls in parallel
Work:

Span:
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Parallel Quicksort VERSION 1
Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C                        2T(n/2)

Idea: Do the two recursive calls in parallel
Work: 

𝑇! 𝑛 = $ 2𝑇!
𝑛
2 + 𝑂 𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff
= O(𝑛 log𝑛)

Span:

𝑇" 𝑛 = $ 𝑇"
𝑛
2 + 𝑐! ⋅ 𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff
= O(𝑛)
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Parallel Quick Sort

With infinitely many processors, we can speed up quicksort from
O(𝑛 log 𝑛) to…
O(𝑛).
So…yeah….

We can do better!
In exchange for using auxiliary arrays (i.e. a not in-place sort).
Probably not better today. But maybe eventually…
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Parallel partition (not in place)

• This is just two packs!
• We know a pack is O(n) work, O(log n) span
• Pack elements less than pivot into left side of aux array 
• Pack elements greater than pivot into right size of aux array
• Put pivot between them and recursively sort
• With a little more cleverness, can do both packs at once but no effect on 

asymptotic complexity

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
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Parallel Quicksort Example (version 2)

• Step 1: pick pivot as median of three

8 1 4 9 0 3 5 2 7 6

• Steps 2a and 2c (combinable): pack less than, then pack greater 
than into a second array (NOTE: no longer in-place!)
– Fancy parallel prefix to pull this off (not shown)

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

• Step 3: Two recursive sorts in parallel
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Parallel Quicksort VERSION 2
Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C                        2T(n/2)

Idea: Do the partition with some parallel prefix packing
Work:

Span:
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Parallel Quicksort VERSION 2
Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C                        2T(n/2)

Idea: Do the partition with some parallel prefix packing
Work: same but worse constants

T! n = $ 2𝑇!
𝑛
2 + 𝑂 𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff
= 𝑂 𝑛 log𝑛

Span:

𝑇" 𝑛 = $𝑇"
𝑛
2 + 𝑂 log𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff
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Parallelize Mergesort?

Recall mergesort: sequential, not-in-place, worst-case O(n log n)

1. Sort left half and right half 2T(n/2)
2. Merge results O(n)

Just like quicksort, doing the two recursive sorts in parallel changes the 
recurrence for the Span to T(n) = O(n) + 1T(n/2) = O(n)

Again, Work is O(nlogn), and 
parallelism is work/span = O(log n)
To do better, need to parallelize the merge

The trick won’t use parallel prefix this time…

7/29/2022 29



Parallelizing the merge (in more detail)
Need to merge two sorted subarrays (may not have the same size)
Idea: Recursively divide subarrays in half, merge halves in parallel

Suppose the larger subarray has m elements.  In parallel:
• Pick the median element of the larger array (here 6) in constant time
• In the other array, use binary search to find the first element greater than or equal 

to that median (here 7)
Then, in parallel:

• Merge half the larger array (from the median onward) with the upper part of the 
shorter array

• Merge the lower part of the larger array with the lower part of the shorter array
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Example: Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7
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Example: Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index
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Example: Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index
2. Find how to split the smaller half at the same value: 

O(log n) to do binary search on the sorted small half
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Example: Parallelizing the Merge

1. Get median of bigger half: O(1) to compute middle index
2. Find how to split the smaller half at the same value: 

O(log n) to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: O(1)

0 4 6 8 9 1 2 3 5 7
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Example: Parallelizing the Merge

1. Get median of bigger half: O(1) to compute middle index
2. Find how to split the smaller half at the same value: 

O(log n) to do binary search on the sorted small half
3. Two sub-merges conceptually splits output array: O(1)
4. Do two submerges in parallel

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5
merge

6 8 9 7
merge
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Example: Parallelizing the Merge
0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5
merge

6 8 9 7
merge

0 4 1 2 3 5 6 8 9 7

0 41 2 3 5 96 8 7
mergemerge merge

0 41 2 3 5 96 8 7

0 41 2 3 5 96 87
merge merge merge

0 41 2 3 5 96 87
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Example: Parallelizing the Merge
0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5
merge

6 8 9 7
merge

0 4 1 2 3 5 6 8 9 7

0 41 2 3 5 96 8 7
mergemerge merge

0 41 2 3 5 96 8 7

0 41 2 3 5 96 87
merge merge merge

0 41 2 3 5 96 87

When we do each merge in parallel:
§ we split the bigger array in half
§ use binary search to split the smaller array
§ And in base case we do the copy
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Parallel Merge Sort

Let’s just analyze the merge:
What’s the worst case?

One subarray has ¾ of the elements, the other has ¼ .
This is why we start with the median of the larger array.

Work: T" n =

Span: 𝑇# 𝑛 =
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Parallel Merge Sort

Let’s just analyze the merge:
What’s the worst case?

One subarray has ¾ of the elements, the other has ¼ .
This is why we start with the median of the larger array.

Work: T" n = -𝑇"
$%
&

+ 𝑇"
%
&
+𝑂 log𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff

Span: 𝑇# 𝑛 = - 𝑇#
$%
&

+𝑂 log𝑛 if 𝑛 ≥ cutoff
𝑂 1 if 𝑛 < cutoff
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Parallel Merge Sort

Let’s just analyze the merge:
What’s the worst case?

One subarray has ¾ of the elements, the other has ¼ .
This is why we start with the median of the larger array.

Work: T" n = 𝑂 𝑛

Span: 𝑇# 𝑛 = 𝑂 log! 𝑛
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Parallel Merge Sort

• Now the full mergesort algorithm:

Work: T" n = - 2𝑇"
%
!
+𝑂 𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff

Span: 𝑇# 𝑛 = - 𝑇#
%
!
+𝑂 log! 𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff
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Parallel Merge Sort

• Now the full mergesort algorithm:

• Work: T" n = O(𝑛 log 𝑛)

• Span: 𝑇# 𝑛 = O log$ 𝑛
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