CSE 332: Data Structures \& Parallelism Lecture 15: Analysis of Fork-Join Parallel Programs

$$
\sqrt{ } \downarrow \rightarrow \text { mid }=100+\frac{h_{i}-10}{2}
$$

Arthur Liu
Summer 2022

The Parallelism Part of this class

- Introduction of Parallelism Ideas
- Java's Thread
- ForkJoin Library
- General Parallelism Algorithms
- Reduce, Map
- Analysis (span, work)
- Clever Parallelism Ideas
- Parallel Prefix
- Parallel Sorts
- Synchronization
- The need for locks (Concurrency)
- Other Synchronization Issues
- Race Conditions: Data Races \& Bad Interleavings

The prefix-sum problem

Given int[] input, produce int[] output where:
output[i] = input[0]+input[1]+...+input[i]

Sequential can be a CSE142 exam problem:

```
int[] prefix sum(int[] input){
    int[] output = new int[input.length];
    output[0] = input[0];
    for(int i=1; i < input.length; i++)
        output[i] = output[i-1]+input[i];
    return output;
}
```


Parallel prefix-sum

- The parallel-prefix algorithm does two passes
- Each pass has $O(n)$ work and $O(\log n)$ span
- So in total there is $O(n)$ work and $O(\log n)$ span
- So like with array summing, parallelism is $n / \log n$
- An exponential speedup
- First pass builds a tree bottom-up: the "up" pass
- Second pass traverses the tree top-down: the "down" pass

Local bragging

Historical note:

- Original algorithm due to R. Ladner and M. Fischer at UW in 1977
- Richard Ladner joined the UW faculty in 1971 and hasn't left

1968?

recent

The algorithm, part 1

1. Propagate ‘sum' up: Build a binary tree where

- Root has sum of input[0] . .input[n-1]
- Each node has sum of input[lo]..input[hi-1]
- Build up from leaves; parent.sum=left.sum+right.sum
- A leaf's sum is just it's value; input [i]

This is an easy fork-join computation: same as sum algorithm of array but this time store answers in tree as we move up

The (completely non-obvious) idea:
Do an initial pass to gather information, enabling us to do a second pass to get the answer

First pass (animated)

The algorithm, part 2

2. Propagate 'fromleft' down:

- Root given a fromLeft of 0
- Node takes its fromLeft value and
- Passes its left child the same fromLeft
- Passes its right child its fromLeft plus its left child's sum (as stored in part 1)
- At the leaf for array position i, output[i]=fromLeft+input[i]

This is also an easy fork-join computation: traverse the tree built in step 1 and fill in the fromLeft field using saved information

- Invariant: fromLeft is sum of elements left of the node's range

Second pass

Using ‘sum’, get the sum of everything to the left of this range (call it 'fromleft'); propagate down from root

input | 6 | 4 | 16 | 10 | 16 | 14 | 2 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

output

6	10	26	36	52	66	68	76

Analysis of Algorithm

Original boring 142 algorithm: On)

Analysis of our fancy prefix sum algorithm:
Analysis of first step:

Analysis of second step:

$$
O(n)^{\text {wot }} O\left(\log _{n}\right)^{\text {span }}
$$

Total for algorithm:

On) work O(logn) span

Analysis of Algorithm

Original boring 142 algorithm: $O(n)$

Analysis of our fancy prefix sum algorithm:
Analysis of first step:
$O(n)$ work, $O(\log n)$ span
Analysis of second step:
$O(n)$ work, $O(\log n)$ span

Total for algorithm:

$O(n)$ work, $O(\log n)$ span

Sequential cut-off

Optimizing: Adding a sequential cut-off isn't too bad:

- Step One: Propagating Up the sums:
- Have a leaf node just hold the sum of a range of values instead of just one array value (Sequentially compute sum for that range)
- The tree itself will be shallower
- Step Two: Propagating Down the fromLefts:
- At leaf, compute prefix sum over its [lo,hi):

On the topic of optimization, do we need to actually have a tree?

Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern, prefix-sum illustrates a pattern that arises in many, many problems

- Minimum, maximum of all elements to the left of i
- Is there an element to the left of i satisfying some property?
- Count of elements to the left of i satisfying some property
- This last one is perfect for an efficient parallel pack...
- Perfect for building on top of the "parallel prefix trick"

Pack (think "Filter")

Given an array input, produce an array output containing only elements such that f (element) is true

Example: input $[17,4,6,8,11) 5,13,19,0,24]$

$$
\begin{aligned}
& \mathrm{f}: \text { "is element }>10 " \\
& \text { output }[17,11,13,19,24]
\end{aligned}
$$

Parallelizable?

- Determining whether an element belongs in the output is easy
- But determining where an element belongs in the output is hard; seems to depend on previous results....

Solution! Parallel Pack =

 parallel map + parallel prefix + parallel map1. Parallel map to compute a bit-vectortor true elements:

2. Parallel map to produce the output:
```
output [17, 11, 13, 19, 24]
}
output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){
    if(bits[i]==1)
        output[bitsum[i]-1] = input[i];
}
```


Pack comments

- First two steps can be combined into one pass
- Just using a different base case for the prefix sum
- No effect on asymptotic complexity
- Can also combine third step into the down pass of the prefix sum
- Again no effect on asymptotic complexity
- Analysis: $O(n)$ work, $O(\log n)$ span
- 2 or 3 passes, but 3 is a constant ()
- Parallelized packs will help us parallelize quicksort...

The Parallelism Part of this class

- Introduction of Parallelism Ideas
- Java's Thread
- ForkJoin Library
- General Parallelism Algorithms
- Reduce, Map
- Analysis (span, work)
- Clever Parallelism Ideas
- Parallel Prefix
- Parallel Sorts (Next)
- Synchronization
- The need for locks (Concurrency)
- Other Synchronization Issues
- Race Conditions: Data Races \& Bad Interleavings

Quick Quick Sort Analysis Note

- For all of our quick sort analysis, we'll do best case.
- The average case is the same as best case.
- Worst case is still going to be the same (bad) $\Theta\left(n^{2}\right)$ with parallelism or not.

Sequential Quicksort review

Recall quicksort was sequential, in-place, expected time $O(n \log n)$

1. Pick a pivot element

Best / expected case work
O(1)
On)
2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C

2 $T(n / 2)$
Recurrence (assuming a good pivot):

Run-time:

$$
\left\{\begin{array}{l}
\sigma(1) \\
2+(n h) \\
L
\end{array} o(n)\right.
$$

Parallel Quicksort VERSION 1

1. Pick a pivot element

Best / expected case work
2. Partition all the data into:

O(1)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C 2T(n/2)

Idea: Do the two recursive calls in parallel
Work:

$$
T_{1}(\eta)=\tau T_{1}\left(\frac{n}{2}\right)+O(n)
$$

Span:

$$
T_{\infty}(n)=T_{\infty}\left(\frac{n}{2}\right)+O(n)
$$

Parallel Quicksort VERSION 1

Best / expected case work

1. Pick a pivot element
2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C

O(1)
O(n)

2T(n/2)
Idea: Do the two recursive calls in parallel
Work:

$$
T_{1}(n)=\left\{\begin{array}{ll}
2 T_{1}\left(\frac{n}{2}\right)+O(n) & \text { if } n \geq \text { cutoff } \\
O(1) & \text { if } n<\text { cutoff }
\end{array}=O(n \log n)\right.
$$

Span:

$$
T_{\infty}(n)=\left\{\begin{array}{ll}
T_{\infty}\left(\frac{n}{2}\right)+c_{1} \cdot n & \text { if } n \geq \text { cutoff } \\
O(1) & \text { if } n<\text { cutoff }
\end{array}=\mathrm{O}(n)\right.
$$

Parallel Quick Sort

With infinitely many processors, we can speed up quicksort from
$0(n \log n)$ to...
$0(n)$.
So...yeah....

We can do better!
In exchange for using auxiliary arrays (i.e. a not in-place sort).
Probably not better today. But maybe eventually...

Parallel partition (not in place)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

- This is just two packs!
- We know a pack is $O(n)$ work, $O(\log n)$ span
- Pack elements less than pivot into left side of aux array
- Pack elements greater than pivot into right size of aux array
- Put pivot between them and recursively sort
- With a little more cleverness, can do both packs at once but no effect on asymptotic complexity

Parallel Quicksort Example (version 2)

- Step 1: pick pivot as median of three

- Steps 2a and 2c (combinable): pack less than, then pack greater than into a second array (NOTE: no longer in-place!)
- Fancy parallel prefix to pull this off (not shown)

- Step 3: Two recursive sorts in parallel

Parallel Quicksort VERSION 2

1. Pick a pivot element
2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C 2T(n/2)

Idea: Do the partition with some parallel prefix packing
Work:

Span:

$$
T_{\infty}=\left\{\begin{array}{l}
0(1) \\
T_{\infty}\left(\frac{n}{2}\right)+O(\log n)
\end{array}\right.
$$

Parallel Quicksort VERSION 2

Best / expected case work

1. Pick a pivot element
2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C

O(1)
$O(n) \longleftrightarrow$ $2 \mathrm{~T}(\mathrm{n} / 2)$

Idea: Do the partition with some parallel prefix packing
Work: same but worse constants

$$
\mathrm{T}_{1}(\mathrm{n})=\left\{\begin{array}{ll}
2 T_{1}\left(\frac{n}{2}\right)+O(n) & \text { if } n \geq \text { cutoff } \\
O(1) & \text { if } n<\text { cutoff }
\end{array}=O(n \log n)\right.
$$

Span:

$$
T_{\infty}(n)= \begin{cases}T_{\infty}\left(\frac{n}{2}\right)+O(\log n) & \text { if } n \geq \text { cutoff } \\ O(1) & \text { if } n<\text { cutoff }\end{cases}
$$

Closed form: $T_{\infty}(n)=\frac{O\left(\log ^{2}(n)\right)}{\Gamma}$

Parallelize Mergesort?

Recall mergesort: sequential, not-in-place, worst-case $O(n \log n)$

1. Sort left half and right half
2. Merge results
```
2T(n/2)
O(n)
```

Just like quicksort, doing the two recursive sorts in parallel changes the recurrence for the Span to $\mathrm{T}(n)=0(n)+1 T(n / 2)=0(n)$

Again, Work is O(nlogn), and
parallelism is work/span $=O(\log n)$
To do better, need to parallelize the merge
The trick won't use parallel prefix this time...

Parallelizing the merge (in more detail)

Need to merge two sorted subarrays (may not have the same size) Idea: Recursively divide subarrays in half, merge halves in parallel

| 0 | 4 | 6 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- |\quad| 1 | 2 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- |

Suppose the larger subarray has m elements. In parallel:

- Pick the median element of the larger array (here 6) in constant time
- In the other array, use binary search to find the first element greater than or equal to that median (here 7)
Then, in parallel:
- Merge half the larger array (from the median onward) with the upper part of the shorter array
- Merge the lower part of the larger array with the lower part of the shorter array

Example: Parallelizing the Merge

$$
\begin{array}{|l|l|l|l|l|}
\hline 0 & 4 & 6 & 8 & 9 \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 3 & 5 & 7 \\
\hline
\end{array}
$$

Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index

Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value: $O(\log n)$ to do binary search on the sorted small half

Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value: $O(\log n)$ to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: $O(1)$

Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value: $O(\log n)$ to do binary search on the sorted small half
3. Two sub-merges conceptually splits output array: $O(1)$
4. Do two submerges in parallel

Example: Parallelizing the Merge

Example: Parallelizing the Merge

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|}\hline 0 & 4 & 6 & 8 & 9 \\ \hline\end{array} \quad \begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right) 7$.

merge					
0	4	1	2	3	5

merge			
6	8	9	7

When we do each merge in parallel:

- we split the bigger array in half
- use binary search to split the smaller array
- And in base case we do the copy

Parallel Merge Sort

Let's just analyze the merge:
What's the worst case?
One subarray has $3 / 4$ of the elements, the other has $1 / 4$. This is why we start with the median of the larger array.

Work: $T_{1}(n)=$

Span: $T_{\infty}(n)=$

Parallel Merge Sort

Let's just analyze the merge:
What's the worst case?
One subarray has $3 / 4$ of the elements, the other has $1 / 4$.
This is why we start with the median of the larger array.
Work: $\mathrm{T}_{1}(\mathrm{n})= \begin{cases}\frac{T_{1}\left(\frac{3 n}{4}\right)+T_{1}\left(\frac{n}{4}\right)+\underbrace{O(\log n)}}{} \text { if } n \geq \text { cutoff } \\ \text { if } n<\text { cutoff }\end{cases}$
Span: $T_{\infty}(n)=\left\{\begin{array}{lc}T_{\infty}\left(\frac{3 n}{4}\right)+O(\log n) & \text { if } n \geq \text { cutoff } \\ O(1) & \text { if } n<\text { cutoff }\end{array}\right.$

Parallel Merge Sort

Let's just analyze the merge:
What's the worst case?
One subarray has $3 / 4$ of the elements, the other has $1 / 4$. This is why we start with the median of the larger array.

Work: $\mathrm{T}_{1}(\mathrm{n})=O(n)$

Span: $T_{\infty}(n)=\underline{O\left(\log ^{2} n\right)}$

Parallel Merge Sort

- Now the full mergesort algorithm:

Work: $\mathrm{T}_{1}(\mathrm{n})=\left\{\begin{array}{lc}2 T_{1}\left(\frac{n}{2}\right)+O(n) & \text { if } n \geq \text { cutoff } \\ O(1) & \text { if } n<\text { cutoff }\end{array}\right.$
Span: $T_{\infty}(n)=\left\{\begin{array}{lc}T_{\infty}\left(\frac{n}{2}\right)+O\left(\log ^{2} n\right) & \text { if } n \geq \text { cutoff } \\ O(1) & \text { if } n<\text { cutoff }\end{array}\right.$

Parallel Merge Sort

- Now the full mergesort algorithm:
- Work: $\mathrm{T}_{1}(\mathrm{n})=\mathrm{O}(n \log n)$
Quiun jort
- Span: $T_{\infty}(n)=O\left(\log ^{3} n\right)$

$$
\frac{O\left(\log ^{2} n\right)}{\log n \log n} \text { 2. } \log (\log (n))
$$

