
CSE 332: Data Structures & Parallelism
Lecture 15: Analysis of Fork-Join Parallel

Programs

Arthur Liu
Summer 2022

7/29/2022 1

The Parallelism Part of this class

• Introduction of Parallelism Ideas
• Java’s Thread
• ForkJoin Library

• General Parallelism Algorithms
• Reduce, Map
• Analysis (span, work)

• Clever Parallelism Ideas
• Parallel Prefix
• Parallel Sorts

• Synchronization
• The need for locks (Concurrency)

• Other Synchronization Issues
• Race Conditions: Data Races & Bad Interleavings

7/29/2022 2

The prefix-sum problem
Given int[] input, produce int[] output where:

output[i] = input[0]+input[1]+…+input[i]

Sequential can be a CSE142 exam problem:

int[] prefix_sum(int[] input){
int[] output = new int[input.length];
output[0] = input[0];
for(int i=1; i < input.length; i++)

output[i] = output[i-1]+input[i];
return output;

}

input
output

6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

7/29/2022 3

Parallel prefix-sum

• The parallel-prefix algorithm does two passes
• Each pass has O(n) work and O(log n) span
• So in total there is O(n) work and O(log n) span
• So like with array summing, parallelism is n/log n

• An exponential speedup

• First pass builds a tree bottom-up: the “up” pass

• Second pass traverses the tree top-down: the “down” pass

7/29/2022 4

Local bragging

Historical note:
• Original algorithm due to R. Ladner and M. Fischer at UW in 1977
• Richard Ladner joined the UW faculty in 1971 and hasn’t left

1968? recent

7/29/2022 5

The algorithm, part 1
1. Propagate ‘sum’ up: Build a binary tree where

• Root has sum of input[0]..input[n-1]
• Each node has sum of input[lo]..input[hi-1]
• Build up from leaves; parent.sum=left.sum+right.sum

• A leaf’s sum is just it’s value; input[i]

This is an easy fork-join computation: same as sum algorithm of array but this
time store answers in tree as we move up

7/29/2022 6

input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7.8
s
f

The (completely non-obvious) idea:
Do an initial pass to gather information,
enabling us to do a second pass to get the
answer

7/29/2022 7

First pass (animated)

input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7.8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

7/29/2022 8

The algorithm, part 2
2. Propagate ‘fromleft’ down:

• Root given a fromLeft of 0
• Node takes its fromLeft value and

• Passes its left child the same fromLeft
• Passes its right child its fromLeft plus its left child’s sum (as stored in part 1)

• At the leaf for array position i, output[i]=fromLeft+input[i]

This is also an easy fork-join computation: traverse the tree built in step 1
and fill in the fromLeft field using saved information

• Invariant: fromLeft is sum of elements left of the node’s range

7/29/2022 9

Second pass

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7.8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36

Using ‘sum’, get the sum of
everything to the left of this
range (call it ‘fromleft’);
propagate down from root

7/29/2022 10

Analysis of Algorithm
Original boring 142 algorithm: O(n)

Analysis of our fancy prefix sum algorithm:
Analysis of first step:

Analysis of second step:

Total for algorithm:

7/29/2022 11

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7.8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36

Analysis of Algorithm
Original boring 142 algorithm: O(n)

Analysis of our fancy prefix sum algorithm:
Analysis of first step:
O(n) work, O(log n) span
Analysis of second step:
O(n) work, O(log n) span

Total for algorithm:
O(n) work, O(log n) span

7/29/2022 12

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7.8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36

Sequential cut-off

Optimizing: Adding a sequential cut-off isn’t too bad:

• Step One: Propagating Up the sums:
• Have a leaf node just hold the sum of a range of values

instead of just one array value (Sequentially compute
sum for that range)

• The tree itself will be shallower

• Step Two: Propagating Down the fromLefts:
• At leaf, compute prefix sum over its [lo,hi):

On the topic of optimization, do we need to actually
have a tree?
7/29/2022 13

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7.8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36

1, 1, 2

7,8,10

Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern,
prefix-sum illustrates a pattern that arises in many, many problems

• Minimum, maximum of all elements
• Is there an element satisfying some property?

• Count of elements satisfying some property
• This last one is perfect for an efficient parallel pack…
• Perfect for building on top of the “parallel prefix trick”

7/29/2022 14

to the left of i
to the left of i

to the left of i

Pack (think “Filter”)
Given an array input, produce an array output containing only
elements such that f(element) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

f: “is element > 10”

output [17, 11, 13, 19, 24]

Parallelizable?
• Determining whether an element belongs in the output is easy
• But determining where an element belongs in the output is hard; seems to

depend on previous results….

7/29/2022 15

Solution! Parallel Pack =
parallel map + parallel prefix + parallel map
1. Parallel map to compute a bit-vector for true elements:

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector:
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output:
output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){

if(bits[i]==1)
output[bitsum[i]-1] = input[i];

}

In this example,
Filter =
element > 10

7/29/2022 16

Pack comments

• First two steps can be combined into one pass
• Just using a different base case for the prefix sum
• No effect on asymptotic complexity

• Can also combine third step into the down pass of the prefix sum
• Again no effect on asymptotic complexity

• Analysis: O(n) work, O(log n) span
• 2 or 3 passes, but 3 is a constant J

• Parallelized packs will help us parallelize quicksort…

7/29/2022 17

The Parallelism Part of this class

• Introduction of Parallelism Ideas
• Java’s Thread
• ForkJoin Library

• General Parallelism Algorithms
• Reduce, Map
• Analysis (span, work)

• Clever Parallelism Ideas
• Parallel Prefix
• Parallel Sorts (Next)

• Synchronization
• The need for locks (Concurrency)

• Other Synchronization Issues
• Race Conditions: Data Races & Bad Interleavings

7/29/2022 18

Quick Quick Sort Analysis Note

• For all of our quick sort analysis, we’ll do best case.
• The average case is the same as best case.

• Worst case is still going to be the same (bad) Θ 𝑛! with
parallelism or not.

7/29/2022 19

Sequential Quicksort review
Recall quicksort was sequential, in-place, expected time O(n log n)

Best / expected case work
1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Recurrence (assuming a good pivot):

Run-time:

7/29/2022 20

Parallel Quicksort VERSION 1
Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Idea: Do the two recursive calls in parallel
Work:

Span:

7/29/2022 22

Parallel Quicksort VERSION 1
Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Idea: Do the two recursive calls in parallel
Work:

𝑇! 𝑛 = $ 2𝑇!
𝑛
2 + 𝑂 𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff
= O(𝑛 log𝑛)

Span:

𝑇" 𝑛 = $ 𝑇"
𝑛
2 + 𝑐! ⋅ 𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff
= O(𝑛)

7/29/2022 23

Parallel Quick Sort

With infinitely many processors, we can speed up quicksort from
O(𝑛 log 𝑛) to…
O(𝑛).
So…yeah….

We can do better!
In exchange for using auxiliary arrays (i.e. a not in-place sort).
Probably not better today. But maybe eventually…

7/29/2022 24

Parallel partition (not in place)

• This is just two packs!
• We know a pack is O(n) work, O(log n) span
• Pack elements less than pivot into left side of aux array
• Pack elements greater than pivot into right size of aux array
• Put pivot between them and recursively sort
• With a little more cleverness, can do both packs at once but no effect on

asymptotic complexity

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

7/29/2022 25

Parallel Quicksort Example (version 2)

• Step 1: pick pivot as median of three

8 1 4 9 0 3 5 2 7 6

• Steps 2a and 2c (combinable): pack less than, then pack greater
than into a second array (NOTE: no longer in-place!)
– Fancy parallel prefix to pull this off (not shown)

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

• Step 3: Two recursive sorts in parallel

7/29/2022 26

Parallel Quicksort VERSION 2
Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Idea: Do the partition with some parallel prefix packing
Work:

Span:

7/29/2022 27

Parallel Quicksort VERSION 2
Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Idea: Do the partition with some parallel prefix packing
Work: same but worse constants

T! n = $ 2𝑇!
𝑛
2 + 𝑂 𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff
= 𝑂 𝑛 log𝑛

Span:

𝑇" 𝑛 = $𝑇"
𝑛
2 + 𝑂 log𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff
7/29/2022 28

Closed form: 𝑇" 𝑛 = 𝑂 log# 𝑛

Parallelize Mergesort?

Recall mergesort: sequential, not-in-place, worst-case O(n log n)

1. Sort left half and right half 2T(n/2)
2. Merge results O(n)

Just like quicksort, doing the two recursive sorts in parallel changes the
recurrence for the Span to T(n) = O(n) + 1T(n/2) = O(n)

Again, Work is O(nlogn), and
parallelism is work/span = O(log n)
To do better, need to parallelize the merge

The trick won’t use parallel prefix this time…

7/29/2022 29

Parallelizing the merge (in more detail)
Need to merge two sorted subarrays (may not have the same size)
Idea: Recursively divide subarrays in half, merge halves in parallel

Suppose the larger subarray has m elements. In parallel:
• Pick the median element of the larger array (here 6) in constant time
• In the other array, use binary search to find the first element greater than or equal

to that median (here 7)
Then, in parallel:

• Merge half the larger array (from the median onward) with the upper part of the
shorter array

• Merge the lower part of the larger array with the lower part of the shorter array

7/29/2022 30

0 4 6 8 9 1 2 3 5 7

Example: Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7

7/29/2022 31

Example: Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index

7/29/2022 32

Example: Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index
2. Find how to split the smaller half at the same value:

O(log n) to do binary search on the sorted small half

7/29/2022 33

Example: Parallelizing the Merge

1. Get median of bigger half: O(1) to compute middle index
2. Find how to split the smaller half at the same value:

O(log n) to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: O(1)

0 4 6 8 9 1 2 3 5 7

7/29/2022 34

Example: Parallelizing the Merge

1. Get median of bigger half: O(1) to compute middle index
2. Find how to split the smaller half at the same value:

O(log n) to do binary search on the sorted small half
3. Two sub-merges conceptually splits output array: O(1)
4. Do two submerges in parallel

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5
merge

6 8 9 7
merge

7/29/2022 35

Example: Parallelizing the Merge
0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5
merge

6 8 9 7
merge

0 4 1 2 3 5 6 8 9 7

0 41 2 3 5 96 8 7
mergemerge merge

0 41 2 3 5 96 8 7

0 41 2 3 5 96 87
merge merge merge

0 41 2 3 5 96 87

7/29/2022 36

Example: Parallelizing the Merge
0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5
merge

6 8 9 7
merge

0 4 1 2 3 5 6 8 9 7

0 41 2 3 5 96 8 7
mergemerge merge

0 41 2 3 5 96 8 7

0 41 2 3 5 96 87
merge merge merge

0 41 2 3 5 96 87

When we do each merge in parallel:
§ we split the bigger array in half
§ use binary search to split the smaller array
§ And in base case we do the copy

7/29/2022 37

Parallel Merge Sort

Let’s just analyze the merge:
What’s the worst case?

One subarray has ¾ of the elements, the other has ¼ .
This is why we start with the median of the larger array.

Work: T" n =

Span: 𝑇# 𝑛 =

7/29/2022 38

Parallel Merge Sort

Let’s just analyze the merge:
What’s the worst case?

One subarray has ¾ of the elements, the other has ¼ .
This is why we start with the median of the larger array.

Work: T" n = -𝑇"
$%
&

+ 𝑇"
%
&
+𝑂 log𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff

Span: 𝑇# 𝑛 = - 𝑇#
$%
&

+𝑂 log𝑛 if 𝑛 ≥ cutoff
𝑂 1 if 𝑛 < cutoff

7/29/2022 39

Parallel Merge Sort

Let’s just analyze the merge:
What’s the worst case?

One subarray has ¾ of the elements, the other has ¼ .
This is why we start with the median of the larger array.

Work: T" n = 𝑂 𝑛

Span: 𝑇# 𝑛 = 𝑂 log! 𝑛

7/29/2022 40

Parallel Merge Sort

• Now the full mergesort algorithm:

Work: T" n = - 2𝑇"
%
!
+𝑂 𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff

Span: 𝑇# 𝑛 = - 𝑇#
%
!
+𝑂 log! 𝑛 if 𝑛 ≥ cutoff

𝑂 1 if 𝑛 < cutoff

7/29/2022 41

Parallel Merge Sort

• Now the full mergesort algorithm:

• Work: T" n = O(𝑛 log 𝑛)

• Span: 𝑇# 𝑛 = O log$ 𝑛

7/29/2022 42

