
input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7.8
s
f

The (completely non-obvious) idea:
Do an initial pass to gather information,
enabling us to do a second pass to get the
answer

7/29/2022 7

7

Pack (think “Filter”)
Given an array input, produce an array output containing only
elements such that f(element) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

f: “is element > 10”

output [17, 11, 13, 19, 24]

Parallelizable?
• Determining whether an element belongs in the output is easy
• But determining where an element belongs in the output is hard; seems to

depend on previous results….

7/29/2022 15

15

Parallel Quicksort VERSION 2
Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Idea: Do the partition with some parallel prefix packing
Work:

Span:

7/29/2022 27

27

Parallel Merge Sort

Let’s just analyze the merge:
What’s the worst case?

One subarray has ¾ of the elements, the other has ¼ .
This is why we start with the median of the larger array.

Work: T! n =

Span: 𝑇" 𝑛 =

7/29/2022 38

38

