Pack (think “Filter”)

Given an array input, produce an array output containing only
elements such that £ (element) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

f: “is element > 107
output [17, 11, 13, 19, 24]
Parallelizable?
« Determining whether an element belongs in the output is easy

« But determining where an element belongs in the output is hard; seems to
depend on previous results....

The (completely non-obvious) idea:
Do an initial pass to gather information, range 0,8
enabling us to do a second pass to get the sum
answer fromleft
range 04 range 48
sum sum
fromleft fromleft
range 0,2 range 24 range 46 range 6,8
sum sum sum sum
fromleft fromleft fromleft fromleft
ro1 |[r12 ([r23 ([r34 |[r45 |[r56 |[r67 |r78
s S s S s S s S
f f f f f f f f
input [6 4 [16 | 10 | 16 | 14 | 2 8
output ‘

Parallel Quicksort VERSION 2

Best / expected case work

1. Pick a pivot element 0(1)
2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivot

C. The elements greater than the pivot

3. Recursively sort Aand C 2T(n/2)

Idea: Do the partition with some parallel prefix packing
Work:

Span:

27

15

Parallel Merge Sort

Let’s just analyze the merge:

What's the worst case?
One subarray has %4 of the elements, the other has % .
This is why we start with the median of the larger array.

Work: Ty(n) =

Span: Te(n) =

38

