CSE 332: Data Structures & Parallelism
Lecture 14: Analysis of Fork-Join Parallel

Programs

Arthur Liu
Summer 2022

07/27/2022

Reduce

It shouldn’t be too hard to imagine how to modify our code to:
/1. Find the maximum element in an array.

2. Determine if there is an element meeting some property.
Find the left-most element satisfying some property.
Count the number of elements meeting some property.
Check if elements are in sorted order.

[And so on...]

o Ok~ W

In O(log N) 1!

Reduce

You’ll do similar problems in section tomorrow.
The key is to describe:

1. How to compute the answer at the cut-off.
2. How to merge the results of two subarrays.

We say parallel code like this@he array
We're reducing the arrays to a single item

Then combining with an associative operation.

e.g. sum, max, leftmost, product, count, or, and, ...

Doesn’t have to be a single number, could be an object.

Even easier: Maps (Data Parallelism)

A map operates on each element of a collection independently
to create a new collection of the same size

* No combining results
* For arrays, this is so trivial some hardware has direct support

: N\
e Canonical example: Vector addition v N

int[] vector_add(int[] arrl, int[] arr2){ 4
assert (arrl.length == arr2.length); {

N

\i\ result = new int[arrl.length];
mo\ &— FORALL (1=0; i < arrl.length; i++) {
R result[i] = arrl[i] + arr2[i];

}

return result;

}

07/27/2022

' 7]
Maps in ForkJoin Framewo Lo s Gk <Inesgs

class VecAdd extends RecursiveAction) {
int lo; int hi; in rl,; int[] arr2;
VecAdd (int 1,int h,int[] r,int[] al,int[] a2){ .. }
protected void compute () {
if (hi - lo < SEQUENTIAL CUTOFF) ({
for(int i=lo; i < hi; i++)
res[i] = arrl[i] + arr2[i];
} else {
int mid = (hi+lo)/2;
VecAdd left = new VecAdd(lo,mid,res,arrl,arr?);
VecAdd right= new VecAdd (mid,hi,res,arrl,arr2);
left.fork () ;
right.compute() ;
left.join() ;

}

}

}
static final ForkJoinPool POOL = new ForkJoinPool () ;

int[] add(int[] arrl, int[] arr2) {
assert (arrl.length == arr2.length) ;
int[] ans = new int[arrl.length];
POOL. invoke (new VecAdd(0,arr.length,ans,arrl, arr?);
return ans;

07/27/2022

Maps and reductions
Maps and reductions: the “workhorses” of parallel programming

e By far the two most important and common patterns
 Two more-advanced patterns in next lecture

* Learn to recognize when an algorithm can be written in terms of maps and
reductions

* Use maps and reductions to describe (parallel) algorithms

* Programming them becomes “trivial” with a little practice
* Exactly like sequential for-loops seem second-nature

Map vs reduce In ForkJoin framework

In our examples:

 Reduce:
e Parallel-sum extended RecursiveTask
e Result was returned from compute()

* Map:
* Class extended was RecursiveAction
* Nothing returned from compute()
* |[n the above code, the ‘answer’ array was passed in as a parameter

Analyzing Algorithms: Work and Span /i\

Let Tr be the running time if there are P processors available
4

Two key measures of run-time:

* Work: How long it would take 1 processor = T,
* Just “sequentialize” the recursive forking
 Cumulative work that all processors must complete

* Span: How long it would take infinity processors = T
* The hypothetical ideal for parallelization
* This is the longest “dependence chain” in the computation

* Example: O(1og n) for summing an array
* Notice in this example having > n/2 processors is no additional help

* Also called “critical path length” or “computational depth”

The DAG (Directed Acyclic Graph)

. 3 éogram execution using £fork and join can be seen as a

 [A DAG is a graph that is directed éedges have direction (arrows)), and those arrows do not create a_cycle (ability
to trace a path that starts and ends at the same node).]

* Nodes: Pieces of work
* Edges: Source must finish before destination starts

* A fork “ends a node” and makes
two outgoing edges
* New thread
e Continuation of current thread

* A join “ends a node” and makes a
node with two incoming edges

* Node just ended
e Last node of thread joined on

Our simple examples, in more detail

Our fork and join often look like this:

%SG cases

ddmbine

results

In this context, the span (T..) IS:
*The longest dependence-chain; longest ‘branch’ in parallel ‘tree’
*Example: O(log n) for summing an array; we halve the data down to our cut-off, then
add back together; O(log n) steps, O(1) time for each
*Also called “critical path length” or “computational depth”

07/27/2022

Connecting to performance

Recall: Tp = running time if there are P processors available

Work =T, = sum of run-time of all nodes in the DAG
* That lonely processor does everything
* Any topological sort is a legal execution
* O(n) for simple maps and reductions

Span =T, = sum of run-time of all nodes on the most-expensive path
In the DAG
* Note: costs are on the nodes not the edges

* Our infinite army can do everything that is ready to be done, but still has to
wait for earlier results

* O(1og n) for simple maps and reductions
=

@ Poll Everywhere pollev.com/artliu

Consider this graph Pl PL

- \
The numbers indicate the amount of time it takes for the task to execute 7T @'
1. Whatis the work?

13
2. What is the span?
2 4t

3. What is the minimum time it
/\ — takes two processors to
v complete the tasks?

!

\

07/27/2022

. T - 100 % -~ Y K
Definitions)\ 1005w /(\1 1

. 109y 7
A couple more terms: LS

* Speed-up on P processors: T, / Tp

 |f speed-up is P as we vary P, we call it perfect linear speed-up
* Perfect linear speed-up means doubling P halves running time o
* Usually our goal; hard to get in practice

* Parallelism is the maximum possible speed-up: T,/ T,
~+ At some point, adding processors won’t help q
 What that point is depends on the span

07/27/2022

Optimal T,: Thanks ForkJoin library!

So we know T, and T, but we want T, (e.g., P=4)

* Ignoring memory-hierarchy issues (caching), Tp can’t beat
* T,/P whynot?
* T, why not?

* S0 an asymptotically optimal execution would be:
Tp = O((Ty/ P)+Tg)
* First term dominates for small P, second for large

* The ForkJoin Framework gives an expected-time guarantee of
asymptotically optimal!
* Guarantee requires a few assumptions about your code...

Division of responsibility \/

* OQur job as ForkJoin Framework users:
* Pick a good algorithm, write a program
* When run, program creates a DAG of things to do
 Make all the nodes a small-ish and approximately equal amount of work

\

* The framework-writer’s job:

* Assign work to available processors to avoid idling
* Let framework-user ignore all scheduling issues

 Keep constant factors low

* Give the expected-time optimal guarantee assuming framework-user did
his/her job

Te = O((Ty/ P)+T)

07/27/2022

Examples
Te = O((Ty/ P)+T,)
In the algorithms seen so far (e.g., sum an array):

* T,=0(n)
* T,.=0(logh)

* S0 expect (ignoring overheads): T, = O(n/P + log n)
Suppose instead:

* T,=0(n2)

o« T_=0(n) L L

* So expect (ignoring overheads): T, = O(n?/P + n)

And now for the bad news...

So far: talked about a parallel program in terms of work and span
In practice, it’'s common that your program has:

a) parts that parallelize well:
* Such as maps/reduces over arrays and trees

b) ...and parts that don’t parallelize at all:

 Such as reading a linked list, getting input, or just doing computations where
each step needs the results of previous step

These unparallelized parts can turn out to be a big bottleneck, which
brings us to Amdahl’s Law ...

07/27/2022

Amdahl’'s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time
Let S be the portion of the execution that can’t be parallelized

Then: — Th1=5S+1-95)=1
Suppose we get perfect linear speeidup on the parallel portion
: _ =3

So the theoretical overall speedup with P processors is (Amdahl’s Law):
Ty _ 1
Tp S+(1-5)/P

And the parallelism (infinite processors) is:
E 1

T S

Amdahl’s Law Tp =S +

Suppose our program takes 100 seconds.
And S is 1/3 (i.e. 33 seconds). 11 Yeuvss

What is the running time w%h
3 processors {73 ¥ £r 2 §¢

© processors 12+ %}jﬁ ek

22 processors 43 4 6{% . Vb
67 processors 37y, & - 34

6
1,000,000 processors (approximately). — 97 scosdy

07/27/2022

Amdahl’'s Law Tp =S A

Suppose our program takes 100 seconds.
And S is 1/3 (i.e. 33 seconds).

What is the running time with

3 processors: 33 + 6/7//3 = b5 seconds

6 processors: 33 + 67/6 = 44 seconds

22 processors: 33+ 6/7/22 =~ 36 seconds

o7 processors 33 + 6/7//67 = 34 seconds

1,000,000 processors (approximately). = 33 seconds

The future and Amdahl’s Law

Lo
Ti/ Tp T S+(1-5)/P Ti/ Ty =

* Suppose you miss the good old days (1980-2005) where 12ish
years was long enough to get 100x speedup

* Now suppose in 12 years, clock speed is the same but you get 256
processors instead of 1 -

* What portion of the program must be parallelizable to get 100x speedup?

/

Al

100 <

1-3S5

|
>+ 256 o D S
[wolframalpha says] (S < 0.00@ { ___

O

07/27/2022

