
CSE 332: Data Structures & Parallelism
Lecture 14: Analysis of Fork-Join Parallel

Programs

Arthur Liu
Summer 2022

07/27/2022

Reduce

It shouldn’t be too hard to imagine how to modify our code to:
1. Find the maximum element in an array.
2. Determine if there is an element meeting some property.
3. Find the left-most element satisfying some property.
4. Count the number of elements meeting some property.
5. Check if elements are in sorted order.
6. [And so on…]

In O(log N) !!!

07/27/2022

Reduce

You’ll do similar problems in section tomorrow.
The key is to describe:
1. How to compute the answer at the cut-off.
2. How to merge the results of two subarrays.

We say parallel code like this “reduces” the array
We’re reducing the arrays to a single item
Then combining with an associative operation.
e.g. sum, max, leftmost, product, count, or, and, …

Doesn’t have to be a single number, could be an object.

07/27/2022

Even easier: Maps (Data Parallelism)

• A map operates on each element of a collection independently
to create a new collection of the same size
• No combining results
• For arrays, this is so trivial some hardware has direct support

• Canonical example: Vector addition
int[] vector_add(int[] arr1, int[] arr2){
assert (arr1.length == arr2.length);
result = new int[arr1.length];
FORALL(i=0; i < arr1.length; i++) {
result[i] = arr1[i] + arr2[i];

}
return result;

}

07/27/2022

Maps in ForkJoin Framework

• Even though there is no result-combining, it still helps
with load balancing to create many small tasks
• Maybe not for vector-add but for more compute-intensive

maps
• The forking is O(log n) whereas theoretically other

approaches to vector-add is O(1)

class VecAdd extends RecursiveAction {
int lo; int hi; int[] res; int[] arr1; int[] arr2;
VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … }
protected void compute(){

if(hi – lo < SEQUENTIAL_CUTOFF) {
for(int i=lo; i < hi; i++)
res[i] = arr1[i] + arr2[i];

} else {
int mid = (hi+lo)/2;
VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
left.fork();
right.compute();
left.join();

}
}

}
static final ForkJoinPool POOL = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2){

assert (arr1.length == arr2.length);
int[] ans = new int[arr1.length];
POOL.invoke(new VecAdd(0,arr.length,ans,arr1,arr2);
return ans;

}
07/27/2022

Maps and reductions

Maps and reductions: the “workhorses” of parallel programming
• By far the two most important and common patterns

• Two more-advanced patterns in next lecture

• Learn to recognize when an algorithm can be written in terms of maps and
reductions

• Use maps and reductions to describe (parallel) algorithms

• Programming them becomes “trivial” with a little practice
• Exactly like sequential for-loops seem second-nature

07/27/2022

Map vs reduce in ForkJoin framework

In our examples:
• Reduce:
• Parallel-sum extended RecursiveTask
• Result was returned from compute()

• Map:
• Class extended was RecursiveAction
• Nothing returned from compute()
• In the above code, the ‘answer’ array was passed in as a parameter

07/27/2022

Analyzing Algorithms: Work and Span
Let TP be the running time if there are P processors available

Two key measures of run-time:

• Work: How long it would take 1 processor = T1
• Just “sequentialize” the recursive forking
• Cumulative work that all processors must complete

• Span: How long it would take infinity processors = T¥
• The hypothetical ideal for parallelization
• This is the longest “dependence chain” in the computation
• Example: O(log n) for summing an array

• Notice in this example having > n/2 processors is no additional help
• Also called “critical path length” or “computational depth”

07/27/2022

The DAG (Directed Acyclic Graph)
• A program execution using fork and join can be seen as a

DAG
• [A DAG is a graph that is directed (edges have direction (arrows)), and those arrows do not create a cycle (ability

to trace a path that starts and ends at the same node).]
• Nodes: Pieces of work
• Edges: Source must finish before destination starts

• A fork “ends a node” and makes
two outgoing edges
• New thread
• Continuation of current thread

• A join “ends a node” and makes a
node with two incoming edges
• Node just ended
• Last node of thread joined on

07/27/2022

Our simple examples, in more detail
Our fork and join often look like this:

base cases

divide

combine
results

In this context, the span (T¥) is:
•The longest dependence-chain; longest ‘branch’ in parallel ‘tree’
•Example: O(log n) for summing an array; we halve the data down to our cut-off, then
add back together; O(log n) steps, O(1) time for each
•Also called “critical path length” or “computational depth”

07/27/2022

Connecting to performance
Recall: TP = running time if there are P processors available

Work = T1 = sum of run-time of all nodes in the DAG
• That lonely processor does everything
• Any topological sort is a legal execution
• O(n) for simple maps and reductions

Span = T¥ = sum of run-time of all nodes on the most-expensive path
in the DAG
• Note: costs are on the nodes not the edges
• Our infinite army can do everything that is ready to be done, but still has to

wait for earlier results
• O(log n) for simple maps and reductions

07/27/2022

Consider this graph
The numbers indicate the amount of time it takes for the task to execute
1. What is the work?

2. What is the span?

3. What is the minimum time it
takes two processors to
complete the tasks?

07/27/2022

pollev.com/artliu

Definitions
A couple more terms:

• Speed-up on P processors: T1 / TP

• If speed-up is P as we vary P, we call it perfect linear speed-up
• Perfect linear speed-up means doubling P halves running time
• Usually our goal; hard to get in practice

• Parallelism is the maximum possible speed-up: T1 / T ¥
• At some point, adding processors won’t help
• What that point is depends on the span

07/27/2022

Optimal TP: Thanks ForkJoin library!
So we know T1 and T ¥ but we want TP (e.g., P=4)

• Ignoring memory-hierarchy issues (caching), TP can’t beat
• T1 / P why not?
• T ¥ why not?

• So an asymptotically optimal execution would be:
TP = O((T1 / P) + T ¥)

• First term dominates for small P, second for large P

• The ForkJoin Framework gives an expected-time guarantee of
asymptotically optimal!
• Guarantee requires a few assumptions about your code…

07/27/2022

Division of responsibility
• Our job as ForkJoin Framework users:
• Pick a good algorithm, write a program
• When run, program creates a DAG of things to do
• Make all the nodes a small-ish and approximately equal amount of work

• The framework-writer’s job:
• Assign work to available processors to avoid idling

• Let framework-user ignore all scheduling issues
• Keep constant factors low
• Give the expected-time optimal guarantee assuming framework-user did

his/her job
TP = O((T1 / P) + T¥)

07/27/2022

Examples
TP = O((T1 / P) + T¥)

In the algorithms seen so far (e.g., sum an array):
• T1 = O(n)
• T¥= O(log n)
• So expect (ignoring overheads): TP = O(n/P + log n)

Suppose instead:
• T1 = O(n2)
• T¥= O(n)
• So expect (ignoring overheads): TP = O(n2/P + n)

07/27/2022

And now for the bad news…

So far: talked about a parallel program in terms of work and span
In practice, it’s common that your program has:

a) parts that parallelize well:
• Such as maps/reduces over arrays and trees

b) …and parts that don’t parallelize at all:
• Such as reading a linked list, getting input, or just doing computations where

each step needs the results of previous step

These unparallelized parts can turn out to be a big bottleneck, which
brings us to Amdahl’s Law …

07/27/2022

Amdahl’s Law (mostly bad news)
Let the work (time to run on 1 processor) be 1 unit time
Let S be the portion of the execution that can’t be parallelized
Then: 𝑇! = 𝑆 + 1 − 𝑆 = 1
Suppose we get perfect linear speedup on the parallel portion

Then: 𝑇" = 𝑆 + !#$
"

So the theoretical overall speedup with P processors is (Amdahl’s Law):
𝑻𝟏
𝑻𝑷
= 𝟏

𝑺((𝟏#𝑺)/𝑷

And the parallelism (infinite processors) is:
-#
-$
= !

$

07/27/2022

Amdahl’s Law

Suppose our program takes 100 seconds.
And 𝑆 is 1/3 (i.e. 33 seconds).

What is the running time with
3 processors
6 processors
22 processors
67 processors
1,000,000 processors (approximately).

𝑇! = 𝑆 +
1 − 𝑆
𝑃

07/27/2022

Amdahl’s Law

Suppose our program takes 100 seconds.
And 𝑆 is 1/3 (i.e. 33 seconds).

What is the running time with
3 processors: 33 + 67/3 ≈ 55 seconds
6 processors: 33 + 67/6 ≈ 44 seconds
22 processors: 33 + 67/22 ≈ 36 seconds
67 processors 33 + 67/67 ≈ 34 seconds
1,000,000 processors (approximately). ≈ 33 seconds

𝑇! = 𝑆 +
1 − 𝑆
𝑃

07/27/2022

The future and Amdahl’s Law

T1 / TP = "
#$("&#)/!

T1 / T¥ = "
#

• Suppose you miss the good old days (1980-2005) where 12ish
years was long enough to get 100x speedup
• Now suppose in 12 years, clock speed is the same but you get 256

processors instead of 1
• What portion of the program must be parallelizable to get 100x speedup?

100 ≤
1

𝑆 + 1 − 𝑆256
[wolframalpha says] 𝑆 ≤ 0.0061.

07/27/2022

