
CSE 332: Data Structures & Parallelism
Lecture 13: Parallelism Intro

Arthur Liu
Summer 2022

07/25/2022 1

Announcements

• Good news: We’re going to delay P2 deadline to Thursday
• Writeup takes a lot of time!

• Good news: Your lowest 2 exercises will be dropped (and count
towards “above & beyond” otherwise)

• EX10 released tonight
• Will be due next Monday

07/25/2022 2

Outline

• Finish QuickSort
• Comparison Sorting Bound
• Non-comparison Sorts

• Possibly, Parallelism Intro

07/25/2022 3

The Parallelism Part of this class

• Introduction of Parallelism Ideas
• Java’s Thread
• ForkJoin Library

• General Parallelism Algorithms
• Reduce, Map
• Analysis (span, work)

• Clever Parallelism Ideas
• Parallel Sorts
• Parallel Prefix

• Synchronization
• The need for locks (Concurrency)

• Other Synchronization Issues
• Race Conditions: Data Races & Bad Interleavings

07/25/2022 4

Why are we doing this?

Parallelism is where computation is heading.

From 1980-2005 (ish) desktop computers got twice as fast every 18
months or so.

Moore’s Law. Not an immutable law of nature. Business decision.
How? Keep making everything smaller

Code not running fast enough? It’ll be four times as fast if you just
buy a new computer.

07/25/2022 5

Why are we doing this?

End of Moore’s Law
We’re at the limit of our ability to shrink processors.

Transistors are really small (much smaller and quantum mechanics kicks in)
and get really hot.

Computer Architects are working very hard to still speed up processors just a
little bit more.

Take an architecture class to get a taste.

But to really achieve a speedup, the solution has been more processors.

07/25/2022 6

Why are we doing this?

Parallelism is where the world is heading.
Our computers are still getting faster by adding more processors

Rather than just making each new one twice as fast.

If we want to solve new, bigger problems, we’re going to need to take advantage of
more than one processor.

We won’t forget about sequential/single processor programming.
It will still be simpler and good enough most of the time.

But understanding parallelism is more important than ever.

07/25/2022 7

Parallelism vs. Concurrency

(Read Grossman text!!! Very short and digestible pdf, and free)

Parallelism: Use extra resources (i.e. processors) to solve your
problem faster
Concurrency: Correctly and efficiently sharing a single resource
among multiple threads.

There is some connection (confusion!) between them

07/25/2022 8

Analogies

Parallelism:
I have hundreds of potatoes to slice.
Get 20 extra cooks (and knives)
Hand them all a bunch of potatoes

Concurrency:
The 20 cooks are trying to share four burners
And one oven

07/25/2022 9

Examples

Parallelism:
I want to sum up all the elements in an array
Divide the array in 4, sum up each piece in a different thread
Add together the threads’ answers for the final answer

Concurrency:
Two users are trying to add an entry to a hash table at the same time.
What if the hashes collide? What if they’re the same key and different
values?

07/25/2022 10

Sharing Memory with Threads

• Our parallelism model will be shared memory with threads.
• There are other models (see Grossman), we won’t use them.

• Sequential Story:
• One program counter
• One call stack
• new Objects go in the heap

• Parallel Story
• Set of threads. Each has its own program counter and its own stack
• Threads will (implicitly) share objects and static fields
• Threads communicate by altering memory.

07/25/2022 11

Sequential Code

PC

local
vars

Heap memory

Objects

Data Structures

Thread 1

• Call stack with local variables
• pc (program counter) determines current statement
• local variables are numbers/null or heap references

07/25/2022 12

Parallel Code

PC

local
vars

PC

local
vars

PC

local
vars

Heap memory

Objects

Data Structures

Thread 1

Thread 2

Thread 3

07/25/2022 13

Other Models
We will focus on shared memory, but you should know
several other models exist and have their own advantages

Message-passing: Each thread has its own collection of
objects. Communication is via explicitly sending/receiving
messages

Cooks working in separate kitchens, mail around
ingredients

Dataflow: Programmers write programs in terms of a DAG.
A node executes after all its predecessors in the graph

Cooks wait to be handed results of previous steps

Data parallelism: Have primitives for things like “apply
function to every element of an array in parallel”

PC

local
vars

PC

local
vars

PC

local
vars

PC

local
vars

Thread 1

Thread 2 Thread 3

Thread 4

07/25/2022 14

We need new primitives

To write parallel programs we need a library with:

• Ways to create and run multiple things at once
• Let’s call these things threads

• Ways for threads to share memory
• Usually just having the same references

• Ways for threads to coordinate
• This week: A way for threads to wait for others to finish
• Next week: prevent others from accessing memory until we’re done

07/25/2022 15

Java basics

First learn some basics built into Java via java.lang.Thread
• Then a better library for parallel programming

To get a new thread running:
1. Define a subclass C of java.lang.Thread, overriding run
2. Create an object of class C
3. Call that object’s start method

• start sets off a new thread, using run as its “main”

What if we instead called the run method of C?
• This would just be a normal method call, in the current thread

Let’s see how to share memory and coordinate via an example…

07/25/2022 16

Parallelism idea
• Example: Sum elements of a large array
• Idea: Have 4 threads simultaneously sum 1/4 of the array

• Warning: This is an inferior first approach

ans0 ans1 ans2 ans3
+
ans

• Create 4 thread objects, each given a portion of the work
• Call start() on each thread object to actually run it in parallel
• Wait for threads to finish using join()
• Add together their 4 answers for the final result

07/25/2022 17

First attempt, part 1
class SumThread extends java.lang.Thread {

int lo; // fields, assigned in the constructor
int hi; // so threads know what to do.
int[] arr;

int ans = 0; // result

SumThread(int[] a, int l, int h) {
lo=l; hi=h; arr=a;

}

public void run() { //override must have this type
for(int i=lo; i < hi; i++)

ans += arr[i];
}

}

Because we must override a no-arguments/no-result run,
we use fields to communicate across threads

07/25/2022 18

First attempt, continued (wrong)
class SumThread extends java.lang.Thread {

int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

int sum(int[] arr){
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++) // do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
for(int i=0; i < 4; i++) // combine results

ans += ts[i].ans;
return ans;

}

07/25/2022 19

Bugs

• We made some Thread objects…
• but we never actually started them. They’re just sitting there.
• Be careful what method you call!
• Libraries will have different methods for

• run() : “look at this thread object, run the code IN YOURSELF not in that thread.”
• start() : “look at this object, tell THAT THREAD to start and run its code.”

07/25/2022 20

Other Thread

Code to
Execute

Ourselves

Second attempt (still wrong)

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start(); // start not run

}
for(int i=0; i < 4; i++) // combine results

ans += ts[i].ans;
return ans;

}

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

07/25/2022 21

Bugs

• We made some Thread objects…
• but we never actually started them. They’re just sitting there.
• Be careful what method you call!
• Libraries will have different methods for

• “look at this thread object, run the code IN YOURSELF not in that thread.”
• “look at this object, tell THAT THREAD to run its code.”

• The current thread is still running.
• Will each thread update its ans field in time?
• Need to tell original thread to WAIT for its children to finish.

07/25/2022 22

Third attempt (correct in spirit)

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start();

}
for(int i=0; i < 4; i++) { // combine results

ts[i].join(); // wait for helper to finish!
ans += ts[i].ans;

}
return ans;

}

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

07/25/2022 23

Join

• Parallelism libraries will define methods you can’t implement on your own.
• E.g. starting a new thread isn’t something you can do yourself.

• join is our first taste of coordinating computation
• Calling thread blocks (just sits there doing nothing) until receiver returns
• Avoids race condition in our original code on ts[i].ans

• This style of programming is called “fork/join”
• Java note: join can throw exceptions. May not compile unless you catch a

java.lang.InterruptedException
• A simple try-catch block should be fine for simple code.

07/25/2022 24

A Better Approach
Several reasons why this is a poor parallel algorithm
1. Want code to be reusable and efficient across platforms

• “Forward-portable” as core count grows
• So at the very least, parameterize by the number of threads

int sum(int[] arr, int numTs){
int ans = 0;
SumThread[] ts = new SumThread[numTs];
for(int i=0; i < numTs; i++){
ts[i] = new SumThread(arr,(i*arr.length)/numTs,

((i+1)*arr.length)/numTs);
ts[i].start();
}
for(int i=0; i < numTs; i++) {

ts[i].join();
ans += ts[i].ans;

}
return ans;

}
07/25/2022 26

Piece
1

Piece
2

Piece
3

Piece
4

A Better Approach
2. Want to use (only) processors “available to you now”
• Not used by other programs or threads in your program

• Maybe caller is also using parallelism
• Available cores can change even while your threads run

If you have 3 processors available and using 3 threads would take time X, then
creating 4 threads would take time 1.5X

• Example: 12 units of work, 3 processors
• Work divided into 3 parts will take 4 units of time
• Work divided into 4 parts will take 3*2 units of time

// numThreads == numProcessors is bad
// if some are needed for other things
int sum(int[] arr, int numTs){
…

}

07/25/2022 27

A Better Approach
If you have 3 processors available and using 3 threads would take time X, then
creating 4 threads would take time 1.5X

• Example: 12 units of work, 3 processors
• Work divided into 3 parts will take 4 units of time
• Work divided into 4 parts will take 3*2 units of time

07/25/2022 28

W W W O O O R R R K K K

W W W O

O O R R

R K K K

W W W

O O O

R R R

K K K

Total Work:

Time

A Better Approach
3. Though unlikely for sum, in general subproblems may take significantly

different amounts of time

• Example: Apply method f to every array element, but maybe f is much
slower for some data items
• Example: Is a large integer prime?

• If we create 4 threads and all the slow data is processed by 1 of them,
we won’t get nearly a 4x speedup
• Example of a load imbalance

07/25/2022 29

The counterintuitive (?) solution to all these problems is to cut up our
problem into many pieces, far more than the number of processors

• But this will require changing our algorithm
• And for constant-factor reasons, abandoning Java’s threads

A Better Approach

ans0 ans1 … ansN
ans

1. Forward-portable: Lots of helpers each doing a small piece
2. Processors available: Hand out “work chunks” as you go

• If 3 processors available and have 100 threads, then ignoring constant-factor
overheads, extra time is < 3%

3. Load imbalance: No problem if slow thread scheduled early enough
• Variation probably small anyway if pieces of work are small

07/25/2022 30

A Better Approach: Potato Version

• Instead of making 4 large piles of potatoes to cut up, make a lot of little piles
and then people can grab the next small pile once they’ve finished

• Decide what size is a good amount. Making each pile a ¼ of a potato is probably too small

07/25/2022 31

Naïve algorithm is poor

Suppose we create 1 thread to process every 1000 elements

int sum(int[] arr){
…
int numThreads = arr.length / 1000;
SumThread[] ts = new SumThread[numThreads];
for(int i=0; i < numThreads; i++){

ts[i] = new SumThread(…);
ts[i].start();

}
for(int i=0; i < numThreads; i++) {

ts[i].join();
ans += ts[i].ans;

}
return ans;

}

Then both the “splitting the
job” and “combining of results”
parts of the code will have
arr.length / 1000 ops

• Linear in size of array
Ө(N) !!! (with constant
factor 1/1000)

• Previous we had only 4
pieces (Ө(1) to
combine)

07/25/2022 32

A better idea: Divide and Conquer!

This will start small, and ‘grow’ threads to fit the problem
This is straightforward to implement using divide-and-conquer

• Parallelism for the recursive calls

+ + + + + + + +

+ + + +

+ +
+

1) Divide problem into pieces recursively:
– Start with full problem at root
– Halve and make new thread until size is at some cutoff

2) Combine answers in pairs as we return from recursion (see diagram)

07/25/2022 33

“Instead of having one
person split up the
potatoes, everyone helps
split up the potatoes”

Code looks something like this (still using Java Threads)

The key is to do the result-combining in parallel as well
• And using recursive divide-and-conquer makes this natural
• Easier to write and more efficient asymptotically!

class SumThread extends java.lang.Thread {
int lo; int hi; int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ // override

if(hi – lo == 1)
for(int i=lo; i < hi; i++)
ans += arr[i];

else {
SumThread left = new SumThread(arr,lo,(hi+lo)/2);
SumThread right= new SumThread(arr,(hi+lo)/2,hi);
left.start();
right.start();
left.join(); // don’t move this up a line – why?
right.join();
ans = left.ans + right.ans;

}
}

} int sum(int[] arr){ // just make one thread!
SumThread t = new SumThread(arr,0,arr.length);
t.run();
return t.ans;

}
07/25/2022 34

Divide And Conquer Optimization

Imagine calling our current algorithm on an array of size 4.
How many threads does it make?
7
It shouldn’t take that many threads to add a few numbers.
And every thread introduces A LOT of overhead.

We’ll want to cut-off the parallelism when the threads cause too much overhead.
Similar optimizations can be used for (sequential) merge and quick sort

07/25/2022 35

Code looks something like this (still using Java Threads)

The key is to do the result-combining in parallel as well
• And using recursive divide-and-conquer makes this natural
• Easier to write and more efficient asymptotically!

class SumThread extends java.lang.Thread {
int lo; int hi; int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ // override

if(hi – lo < SEQUENTIAL_CUTOFF)
for(int i=lo; i < hi; i++)
ans += arr[i];

else {
SumThread left = new SumThread(arr,lo,(hi+lo)/2);
SumThread right= new SumThread(arr,(hi+lo)/2,hi);
left.start();
right.start();
left.join();
right.join();
ans = left.ans + right.ans;

}
}

} int sum(int[] arr){ // just make one thread!
SumThread t = new SumThread(arr,0,arr.length);
t.run();
return t.ans;

}
07/25/2022 36

Cut-offs

Are we really saving that much?

Suppose we’re summing an array of size 2!"

And we set a cut-off of size-100
i.e. subarrays of size 100 are summed without making any new threads.

What fraction of the threads have we just eliminated?

99.9% !!!! (for fun you should check the math)

07/25/2022 37

One more optimization

• A small tweak to our code will eliminate half of our threads

Current thread actually executes the right hand side.
Ordering of these commands is very important!

// wasteful: don’t
SumThread left = …
SumThread right = …

left.start();
right.start();

left.join();
right.join();
ans=left.ans+right.ans;

// better: do!!
SumThread left = …
SumThread right = …

left.start();
right.run();

left.join();
// no right.join needed!
ans=left.ans+right.ans;

07/25/2022 38

Creating Fewer threads pictorially
2 new threads at each step
(and only leaf threads
do much work)
Total =
15 threads

1 new thread
at each step
Total =
8 threads

15
+

14
+

13
+

12
+

11
+

10
+

9
+

8
+

7
+

6
+

5
+

4
+

3
+

2
+

1
+

1
+

8
+

4
+

7
+

2
+

6
+

3
+

5
+

1
+

4
+

2
+

3
+

1
+

2
+

1
+

07/25/2022 39

Analysis

• None of our optimizations will make a difference in the O() analysis
But they will make a difference in practice.

07/25/2022 40

That library, finally

• Even with all this care, Java’s threads are too “heavyweight”
• Constant factors, especially space overhead
• Creating 20,000 Java threads just a bad idea L

• The ForkJoin Framework is designed to meet the needs of divide-and-conquer
fork-join parallelism

• In the Java 8 standard libraries
• Section will focus on pragmatics/logistics
• Similar libraries available for other languages

• C/C++: Cilk (inventors), Intel’s Thread Building Blocks
• C#: Task Parallel Library
• …

• Library’s implementation is a fascinating but advanced topic

07/25/2022 41

ForkJoin Library

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.RecursiveTask;

import java.util.concurrent.RecursiveAction;

Two possible classes to extend
RecursiveTask<E>

Returns an E object

RecursiveAction
Doesn’t return anything.

First thread created by:
POOL.invoke(ThreadObject);

07/25/2022 42

ForkJoin Library summary

• Your Thread objects need to write a compute() method
• This is the code that gets executed
• Calling compute()does NOT start a new thread in the JVM.

• Start (and run) a new thread: fork()
• Wait for a thread to finish: join()

• join() will return an object, if you extended RecursiveTask

• Use the ForkJoinPool to start off the initial task (instead of a top-level call to run)

07/25/2022 43

Fork Join Framework Version: (missing imports)
class SumTask extends RecursiveTask<Integer> {

int lo; int hi; int[] arr; // fields to know what to do
SumTask(int[] a, int l, int h) { … }
protected Integer compute(){// return answer

if(hi – lo < SEQUENTIAL_CUTOFF) {
int ans = 0; // local var, not a field
for(int i=lo; i < hi; i++)
ans += arr[i];

return ans;
} else {

SumTask left = new SumTask(arr,lo,(hi+lo)/2);
SumTask right= new SumTask(arr,(hi+lo)/2,hi);
left.fork(); // fork a thread and calls compute
int rightAns = right.compute();//call compute directly
int leftAns = left.join(); // get result from left
return leftAns + rightAns;

}
}

} static final ForkJoinPool POOL = new ForkJoinPool();
int sum(int[] arr){

SumTask task = new SumTask(arr,0,arr.length)
return POOL.invoke(task);
// invoke returns the value compute returns

}
07/25/2022 44

pollev.com/artliu

Fork Join Framework Version: (missing imports)
class MaxTask extends RecursiveTask<Integer> {

int lo; int hi; int[] arr; // fields to know what to do
SumTask(int[] a, int l, int h) { … }
protected Integer compute(){// return answer

if(hi – lo < SEQUENTIAL_CUTOFF) {
int ans = arr[0]; // local var, not a field
for(int i=lo; i < hi; i++)
ans = Math.max(ans, arr[i]);

return ans;
} else {

SumTask left = new SumTask(arr,lo,(hi+lo)/2);
SumTask right= new SumTask(arr,(hi+lo)/2,hi);
left.fork(); // fork a thread and calls compute
int rightAns = right.compute();//call compute directly
int leftAns = left.join(); // get result from left
return Math.max(leftAns, rightAns);

}
}

} static final ForkJoinPool POOL = new ForkJoinPool();
int max(int[] arr){

MaxTask task = new MaxTask(arr,0,arr.length)
return POOL.invoke(task);
// invoke returns the value compute returns

}
07/25/2022 45

