
Java basics

First learn some basics built into Java via java.lang.Thread
• Then a better library for parallel programming

To get a new thread running:
1. Define a subclass C of java.lang.Thread, overriding run
2. Create an object of class C
3. Call that object’s start method

• start sets off a new thread, using run as its “main”

What if we instead called the run method of C?
• This would just be a normal method call, in the current thread

Let’s see how to share memory and coordinate via an example…

07/25/2022 16

16

First attempt, part 1
class SumThread extends java.lang.Thread {

int lo; // fields, assigned in the constructor
int hi; // so threads know what to do.
int[] arr;

int ans = 0; // result

SumThread(int[] a, int l, int h) {
lo=l; hi=h; arr=a;

}

public void run() { //override must have this type
for(int i=lo; i < hi; i++)

ans += arr[i];
}

}

Because we must override a no-arguments/no-result run,
we use fields to communicate across threads

07/25/2022 18

18

The counterintuitive (?) solution to all these problems is to cut up our
problem into many pieces, far more than the number of processors

• But this will require changing our algorithm
• And for constant-factor reasons, abandoning Java’s threads

A Better Approach

ans0 ans1 … ansN
ans

1. Forward-portable: Lots of helpers each doing a small piece
2. Processors available: Hand out “work chunks” as you go

• If 3 processors available and have 100 threads, then ignoring constant-factor
overheads, extra time is < 3%

3. Load imbalance: No problem if slow thread scheduled early enough
• Variation probably small anyway if pieces of work are small

07/25/2022 29

29

Naïve algorithm is poor

Suppose we create 1 thread to process every 1000 elements
int sum(int[] arr){

…
int numThreads = arr.length / 1000;
SumThread[] ts = new SumThread[numThreads];
…

}

Then the “combining of results” part of the code will have arr.length / 1000
additions

• Linear in size of array (with constant factor 1/1000)
• Previous we had only 4 pieces (Ө(1) to combine)

• In the extreme, suppose we create one thread per element – If we use a for loop to
combine the results, we have N iterations

• In either case we get a Ө(N) algorithm with the combining of results as the
bottleneck….

07/25/2022 30

30

