
CSE 332: Data Structures & Parallelism
Lecture 12: Sorting

Arthur Liu
Summer 2022

07/22/2022 1

Outline

• Sorting and more sorting

07/22/2022 2

Sorting

Great general pre-processing step
• Binary Search
• Let’s us find the 𝑘!" element in 𝑂(1) time for any 𝑘.

Also, a convenient way to discuss algorithm design principles.

07/22/2022 3

Three goals

Three things you might want in a sorting algorithm:
• In-Place
• Only use 𝑂(1) extra memory.
• Sorted array given back in the input array.

• Stable
• If a appears before b in the initial array and a.compareTo(b) == 0
• Then a appears before b in the final array.
• Example: sort by first name, then by last name.

• Fast

07/22/2022 4

Insertion Sort

How you sort a hand of cards.

Maintain a sorted subarray at the front.
Start with one element.
While(your subarray is not the full array)

Take the next element not in your subarray
Insert it into the sorted subarray

07/22/2022 5

Insertion Sort

for(i from 1 to n-1){

int index = i
while(a[index-1] > a[index]){

swap(a[index-1], a[index])
index = index-1

}
}

07/22/2022 6

Insertion Sort

0 1 2 3 4 5 6 7 8 9
2 3 6 7 5 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9
2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9
2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item
07/22/2022 7

Insertion Sort Analysis

Stable? Yes! (If you’re careful)
In Place? Yes!
Running time:

Best Case: 𝑂(𝑛)
Worst Case: 𝑂(𝑛#)
Average Case: 𝑂 𝑛#

07/22/2022 8

Sort

Here’s another idea for a sorting algorithm:
• Maintain a sorted subarray
• While(subarray is not full array)
• Find the smallest element remaining in the unsorted part.
• Append it at the end of the sorted part.

07/22/2022 9

Selection Sort

Here’s another idea for a sorting algorithm:
• Maintain a sorted subarray
• While(subarray is not full array)
• Find the smallest element remaining in the unsorted part.

• By scanning the remainder of the array
• Append it at the end of the sorted part.

Running time 𝑂(𝑛!)

07/22/2022 10

Selection Sort

0 1 2 3 4 5 6 7 8 9
2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9
2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9
2 3 6 7 9 10 18 14 11 15

Sorted Items Unsorted ItemsCurrent Item
07/22/2022 11

Selection Sort

Here’s another idea for a sorting algorithm:
• Maintain a sorted subarray
• While(subarray is not full array)
• Find the smallest element remaining in the unsorted part.

• By scanning the remainder of the array
• Append it at the end of the sorted part.

Running time 𝑂(𝑛!)
Can we do better? With a data structure?

07/22/2022 12

Heap Sort

Here’s another idea for a sorting algorithm:
• Maintain a sorted subarray; Make the unsorted part a min-heap
• While(subarray is not full array)
• Find the smallest element remaining in the unsorted part.

• By calling removeMin on the heap
• Append it at the end of the sorted part.

Running time 𝑂(𝑛 log 𝑛)

07/22/2022 13

Heap Sort
0 1 2 3 4 5 6 7 8 9
1 4 2 14 15 18 16 17 20 22

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9
22 4 2 14 15 18 16 17 20 1

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9
2 4 16 14 15 18 22 17 20 1

Heap Sorted Items
Current Item

percolateDown(22)

07/22/2022 14

Heap Sort (Better)

• We’re sorting in the wrong order!
• Could reverse at the end.

• Our heap implementation will implicitly assume that the heap is on
the left of the array.
• Switch to a max-heap and keep the sorted stuff on the right.

• What’s our running time? 𝑂(𝑛 log 𝑛)

07/22/2022 15

Heap Sort

• Our first step is to make a heap. Does using buildHeap instead
of inserts improve the running time?
• Not in a big-O sense (though we did by a constant factor).

In place: Yes
Stable: No

07/22/2022 16

Quick Recap

Run-time Stable Space

Insertion Sort Best Case: O(N)
Worst Case: O(N2)
Average Case: O(N2)

Yes O(1)

Selection Sort O(N2) No O(1)

Heap Sort O(N log N) No O(1)

07/22/2022 17

We just saw Heap Sort, what about an “AVL Sort”?

07/22/2022

pollev.com/artliu

1. How would the algorithm work?

2. What is the worst-case runtime?

3. Would this be a good alternative to heap sort?

18

The Big Picture

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
W(n log n)

Specialized
algorithms:

O(n)

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

07/22/2022 19

Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Solve the parts independently
• Think recursion
• Or potential parallelism

3. Combine solution of parts to produce overall solution

Ex: Sort each half of the array, combine together; to sort each half,
split into halves…

07/22/2022 20

Divide-and-conquer sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)
Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a “pivot” element
Divide elements into those less-than pivot and those greater-than pivot
Sort the two divisions (recursively on each)
Answer is [sorted-less-than then pivot then sorted-greater-than]

07/22/2022 21

Mergesort

• To sort array from position lo to position hi:
• If range is 1 element long, it’s sorted! (Base case)
• Else, split into two halves:

• Sort from lo to (hi+lo)/2
• Sort from (hi+lo)/2 to hi
• Merge the two halves together

• Merging takes two sorted parts and sorts everything
• O(n) but requires auxiliary space…

07/22/2022

8 2 9 4 5 3 1 6a

hi

0 1 2 3 4 5 6 7

lo

22

Example, focus on merging

Start
with:

07/22/2022

8 2 9 4 5 3 1 6

After we return from
left and right recursive calls
(pretend it works for now)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

(After merge,
copy back to
original array)

aux

a

a

23

Example, focus on merging

Start
with:

07/22/2022

8 2 9 4 5 3 1 6

After recursion:
(not magic J)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1

(After merge,
copy back to
original array)

24

aux

a

a

Example, focus on merging

Start
with:

07/22/2022

8 2 9 4 5 3 1 6

After recursion:
(not magic J)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2

(After merge,
copy back to
original array)

25

aux

a

a

Example, focus on merging

Start
with:

07/22/2022

8 2 9 4 5 3 1 6

After recursion:
(not magic J)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3

(After merge,
copy back to
original array)

26

aux

a

a

Example, focus on merging

Start
with:

07/22/2022

8 2 9 4 5 3 1 6

After recursion:
(not magic J)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4

(After merge,
copy back to
original array)

27

aux

a

a

Example, focus on merging

Start
with:

07/22/2022

8 2 9 4 5 3 1 6

After recursion:
(not magic J)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5

(After merge,
copy back to
original array)

28

aux

a

a

Example, focus on merging

Start
with:

07/22/2022

8 2 9 4 5 3 1 6

After recursion:
(not magic J)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5 6

(After merge,
copy back to
original array)

29

aux

a

a

Example, focus on merging

Start
with:

07/22/2022

8 2 9 4 5 3 1 6

After recursion:
(not magic J)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5 6 8

(After merge,
copy back to
original array)

30

aux

a

a

Example, focus on merging

Start
with:

07/22/2022

8 2 9 4 5 3 1 6

After recursion:
(not magic J)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5 6 8 9

(After merge,
copy back to
original array)

31

aux

a

a

Example, focus on merging

Start
with:

07/22/2022

8 2 9 4 5 3 1 6

After recursion:
(not magic J)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5 6 8 9

(After merge,
copy back to
original array)

1 2 3 4 5 6 8 9

32

aux

a

a

a

Mergesort example: Recursively splitting list in half

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

07/22/2022 33

Mergesort example: Merge as we return from recursive calls

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

2 8

2 4 8 9

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

1 3 5 6

When a recursive call ends, it’s sub-arrays are each in order; just
need to merge them in order together07/22/2022 34

Mergesort, some details: saving a little time
• What if the final steps of our merging looked like the following:

• Seems kind of wasteful to copy 8 & 9 to the auxiliary array just to
copy them immediately back…

2 4 5 6 1 3 8 9

1 2 3 4 5 6

Main array

Auxiliary array

07/22/2022 35

Mergesort, some details: saving a little time
• Unnecessary to copy remainder over to auxiliary array

• If left-side finishes first, just stop the merge & copy the auxiliary array:

• If right-side finishes first, copy remainder directly into right side, then
copy auxiliary array

copy

first

second

07/22/2022 36

Some details: saving space / copying
Simplest / worst approach:

Use a new auxiliary array of size (hi-lo) for every merge
Returning from a recursive call? Allocate a new array!

Better:
Reuse same auxiliary array of size n for every merging stage
Allocate auxiliary array at beginning, use throughout

Best (but a little tricky), (saves time):
Don’t copy back – at 2nd, 4th, 6th, … merging stages, use the
original array as the auxiliary array and vice-versa
• Need one copy at end if number of stages is odd

07/22/2022 37

Picture of the “best” from previous slide:
Allocate one auxiliary array, switch each step

First recurse down to lists of size 1
As we return from the recursion, switch off arrays

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed

07/22/2022 38

Linked lists and big data

We defined the sorting problem as over an array, but sometimes you want
to sort linked lists

One approach:
• Convert to array: O(n)
• Sort: O(n log n)
• Convert back to list: O(n)

Or: mergesort works very nicely on linked lists directly
• heapsort and quicksort do not
• insertion sort and selection sort do but they’re slower

Mergesort is also the sort of choice for external sorting
• Linear merges minimize disk accesses

07/22/2022 39

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should
analyze its running time (and space):

To sort n elements, we:
• Return immediately if n=1
• Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation?

07/22/2022 40

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should
analyze its running time (and space):

To sort n elements, we:
• Return immediately if n=1
• Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:
T(1) = c1

T(n) = 2T(n/2) + c2n + c3

07/22/2022 41

Mergesort Recurrence
(For simplicity let constants be 1 – no effect on asymptotic answer)

T(1) = 1 So total is 2kT(n/2k) + kn where
T(n) = 2T(n/2) + n n/2k = 1, i.e., log n = k

= 2(2T(n/4) + n/2) + n That is, 2log n T(1) + n log n
= 4T(n/4) + 2n = n + n log n
= 4(2T(n/8) + n/4) + 2n = O(n log n)
= 8T(n/8) + 3n
…. (after k expansions)
= 2kT(n/2k) + kn

07/22/2022 42

Or more intuitively…
This recurrence comes up often enough you should just “know” it’s O(n log n)

Merge sort is relatively easy to intuit (best, worst, and average):
• The recursion “tree” will have log n height
• At each level we do a total amount of merging equal to n

07/22/2022 43

Quicksort
• Also uses divide-and-conquer

• Recursively chop into halves
• But, instead of doing all the work as we merge together, we’ll do all the work as we

recursively split into halves
• Also unlike MergeSort, does not need auxiliary space

• O(n log n) on average J, but O(n2) worst-case L
• MergeSort is always O(nlogn)
• So why use QuickSort?

• Can be faster than mergesort
• Often believed to be faster
• Quicksort does fewer copies and more comparisons, so it depends on the relative

cost of these two operations!

07/22/2022 44

Quicksort Overview

1. Pick a pivot element
• Hopefully an element ~median
• Good QuickSort performance depends on good choice of pivot; we’ll see why later, and talk about good pivot

selection later

2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C
4. The answer is, “as simple as A, B, C”

(Alas, there are some details lurking in this algorithm)

07/22/2022 45

Quicksort: Think in terms of sets

07/22/2022

13
81

92
43

65

31 57

26

75
0

S select pivot value

13 8192
43 65

31

5726

750S1 S2 partition S

13 4331 57260

S1
81 927565

S2
QuickSort(S1) and

QuickSort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted

[Weiss]

46

Quicksort Example, showing recursion

07/22/2022

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

5

83

1

6 8 9

47

Quicksort Details

We have not yet explained:

• How to pick the pivot element
• Any choice is correct: data will end up sorted
• But as analysis will show, want the two partitions to be about equal in size

• How to implement partitioning
• In linear time
• In place

07/22/2022 48

Pivots

• Best pivot?
• Median
• Halve each time

• Worst pivot?
• Greatest/least element
• Reduce to problem of size 1 smaller
• O(n2)

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

5

83

1

6 8 9

07/22/2022 49

Quicksort: Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)…

• Pick arr[lo] or arr[hi-1]
• Fast, but worst-case is (mostly) sorted input

• Pick random element in the range
• Does as well as any technique, but (pseudo)random number generation

can be slow
• (Still probably the most elegant approach)

• Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
• Common heuristic that tends to work well

07/22/2022 50

Partitioning

• That is, given 8, 4, 2, 9, 3, 5, 7 and pivot 5
• Dividing into left half & right half (based on pivot)

• Conceptually simple, but hardest part to code up correctly
• After picking pivot, need to partition

• Ideally in linear time
• Ideally in place

• Ideas?

07/22/2022 51

Hoare Partitioning
• One approach (there are slightly fancier ones):

1. Swap pivot with arr[lo]; move it ‘out of the way’
2. Use two fingers i and j, starting at lo+1 and hi-1 (start &

end of range, apart from pivot)
3. Move from right until we hit something less than the pivot;

belongs on left side
Move from left until we hit something greater than the pivot;
belongs on right side
Swap these two; keep moving inward
while (i < j)

if (arr[j] > pivot) j--
else if (arr[i] <= pivot) i++
else swap arr[i] with arr[j]

4. Put pivot back in middle (Swap with arr[i])
07/22/2022 52

Quicksort Example

• Step one: pick pivot as median of 3
• lo = 0, hi = 10

07/22/2022

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

• Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

53

Quicksort Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

07/22/2022

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than
one swap during partition –
this is a short example

5 1 4 2 0 3 6 9 7 8

54

Quicksort Analysis

Best-case?

Worst-case?

Average-case?

07/22/2022 55

Quicksort Analysis

Best-case: Pivot is always the median
T(0) = T(1) = 1

T(n) = 2T(n/2) + n (linear-time partition)
Same recurrence as mergesort: O(n log n)

Worst-case: Pivot is always smallest or largest element
T(0) = T(1) = 1

T(n) = T(n-1) + n

Basically same recurrence as selection sort: O(n2)

Average-case: (e.g., with random pivot)
• O(N log N), not responsible for proof (in text)

07/22/2022 56

Is QuickSort Stable?

It depends on how we partition the elements…

Naïve Partitioning (Stable, requires more space!)
• Two passes over data

1. Store all values in temporary array that are smaller than pivot
2. (Add pivot, then) Store all values in temporary array that are larger than

pivot

Hoare’s Partitioning Scheme (NOT Stable)
• Pointer swapping (what we just saw)

07/22/2022 57

Quicksort Cutoffs

• For small n, all that recursion tends to cost more than doing a quadratic sort
• Remember asymptotic complexity is for large n
• Also, recursive calls add a lot of overhead for small n

• Common engineering technique: switch to a different algorithm for
subproblems below a cutoff
• Reasonable rule of thumb: use insertion sort for n < 10

• Notes:
• Could also use a cutoff for merge sort
• Cutoffs are also the norm with parallel algorithms

• switch to sequential algorithm
• None of this affects asymptotic complexity

07/22/2022 58

Quicksort Cutoff skeleton

07/22/2022

void quicksort(int[] arr, int lo, int hi) {
if(hi – lo < CUTOFF)

insertionSort(arr,lo,hi);
else

…
}

Notice how this cuts out the vast majority of the recursive calls
– Think of the recursive calls to quicksort as a tree
– Trims out the bottom layers of the tree

59

Quick Recap

Run-time Stable Space

Insertion Sort Best Case: O(N)
Worst Case: O(N2)
Average Case: O(N2)

Yes O(1)

Selection Sort O(N2) No O(1)

Heap Sort O(N log N) No O(1)

Merge Sort O(N log N) Yes O(N)

Quick Sort
(Hoare’s Partition)

Best Case: O(N log N)
Worst Case: O(N2)
Average Case: O(N log N)

No O(1)

07/22/2022 60

The Big Picture

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
W(n log n)

Specialized
algorithms:

O(n)

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

07/22/2022 61

Lower Bound

• We keep hitting 𝑂(𝑛 log 𝑛) in the worst case.
• Can we do better?
• Or is this 𝑂(𝑛 log 𝑛) pattern a fundamental barrier?
• Without more information about our data set, we cannot do better.

Any sorting algorithm which only interacts with its input by
comparing elements must take Ω(n log n) time.

Comparison Sorting Lower Bound

07/22/2022 62

Decision Trees

• Suppose we have a size 3 array to sort.
• We will figure out which array to return by comparing elements.
• When we know what the correct order is, we’ll return that array.

07/22/2022 63

a<b<c; a<c<b; b<a<c;
b<c<a; c<b<a; c<a<b

a<b<c; a<c<b; c<a<b b<a<c; b<c<a; c<b<a

a<b<c a<c<b; c<a<b b<c<a; c<b<ab<a<c

a<c<b c<a<b b<c<a c<b<a

Ask: is
a < b?

Ask: is
b<c?

Ask: is
a<c?

Ask: is
a<c?

Ask: is
b<c?

07/22/2022 64

6/24/2022

pollev.com/artliu

65

Complete the Proof

• How many operations can we guarantee in the worst case?
(In terms of the decision tree diagram of our arbitrary sorting algorithm)

• How tall is the tree if the array is length 𝑛?

• What’s the simplified Ω() ?

Complete the Proof

• How many operations can we guarantee in the worst case?

• How tall is the tree if the array is length 𝑛?

• What’s the simplified Ω() ?

07/22/2022 66

Complete the Proof

• How many operations can we guarantee in the worst case?
• Equal to the height of the tree.

• How tall is the tree if the array is length 𝑛?
• One of the children has at least half of the possible inputs.
• What level can we guarantee has an internal node? log#(𝑛!)

• What’s the simplified Ω() ?
log!(𝑛!) = log! 𝑛 + log!(𝑛 − 1) + log! 𝑛 − 2 +⋯+ log!(1)

≥ log!
"
!
+ log!

"
!
+⋯+ log!

"
!

(only 𝑛/2 copies)

• ≥ "
!
log!

"
!
= 𝑛/2(log! 𝑛 − 1) = Ω(𝑛 log 𝑛)

07/22/2022 67

Takeaways

A tight lower bound like this is very rare.
This proof had to argue about every possible algorithm
• that’s really hard to do.

We can’t come up with a more clever recurrence to sort faster.
Unless we make some assumptions about our input.
And get information without doing the comparisons.

07/22/2022 68

Avoiding the Lower Bound

Can we avoid using comparisons?
In general, probably not.
But what if we know that all of our data points are small integers?

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
W(n log n)

Specialized
algorithms:

O(n)

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

07/22/2022 69

Bucket Sort (aka Bin Sort)

4 3 1 2 1 1 2 3 4 2

1 1 1 2 2 2 3 3 4 4

1 2 3 4

Assumption: We only have values 1, 2, 3, 4

07/22/2022 70

Formalizing: BucketSort (a.k.a. BinSort)
• If all values to be sorted are known to be integers between 1 and K

(or any small range),
• Create an array of size K, and put each element in its proper bucket (a.ka. bin)
• If data is only integers, no need to store more than a count of how many times that

bucket has been used

• Output result via linear pass through array of buckets

07/22/2022

count array
1
2
3
4
5

• Example:
K=5
Input: (5,1,3,4,3,2,1,1,5,4,5)
output:

71

Analyzing bucket sort

• Overall: O(n+K)
• Linear in n, but also linear in K
• W(n log n) lower bound does not apply because this is not a comparison sort

• Good when range, K, is smaller (or not much larger) than n
• (We don’t spend time doing lots of comparisons of duplicates!)

• Bad when K is much larger than n
• Wasted space; wasted time during final linear O(K) pass

• For data in addition to integer keys, use list at each bucket

07/22/2022 73

Bucket Sort with Data
• Most real lists aren’t just #’s; we have data
• Each bucket is a list (say, linked list)
• To add to a bucket, place at end O(1) (keep pointer to last element)

count array

1

2

3

4

5

• Example: Movie ratings:
1=bad,… 5=excellent

• Input=
5: Casablanca
3: Harry Potter movies
1: The Bee Movie
5: Star Wars

The Bee Movie

Harry Potter

Casablanca Star Wars

Result: 1: The Bee Movie, 3: Harry Potter, 5: Casablanca, 5: Star Wars
This result is stable; Casablanca still before Star Wars

07/22/2022

Bucket sort illustrates
a more general trick:
How might you
implement a heap for a
small range of integer
priorities in a similar
manner…

74

Radix Sort

• For each digit (starting at the ones place)
• Run a “bucket sort” with respect to that digit
• Keep the sort stable!

07/22/2022 75

Radix Sort: Ones Place

012 234 789 555 678 200 777 562

0 1 2 3 4 5 6 7 8 9

07/22/2022 76

Radix Sort: Ones Place

012 234 789 555 678 200 777 562

200 012 562 234 555 777 678 789

0 1 2 3 4 5 6 7 8 9

200

562

234 555 777 789678012

07/22/2022 77

Radix Sort: Tens Place

200 012 562 234 555 777 678 789

0 1 2 3 4 5 6 7 8 9

07/22/2022 78

Radix Sort: Tens Place

200 012 562 234 555 777 678 789

200 012 234 555 562 777 678 789

0 1 2 3 4 5 6 7 8 9

200 562234 555 777 789

678

012

07/22/2022 79

Radix Sort: Hundreds Place

200 012 234 555 562 777 678 789

0 1 2 3 4 5 6 7 8 9

07/22/2022 80

Radix Sort: Hundreds Place

012 200 234 555 562 678 777 789

200 012 234 555 562 777 678 789

0 1 2 3 4 5 6 7 8 9

200

562
234

555 777

789

678012

07/22/2022 81

Radix Sort

Performance depends on:
• Input size: n
• Number of buckets = Radix: B
• e.g. Base 10 number: 10; binary number: 2; Alpha-numeric char: 62

• Number of passes = “Digits”: P
• e.g. Phone Number: 10; Person’s name: ?

• Work per pass is 1 bucket sort: O(B+n)
• Each pass is a Bucket Sort

• Total runtime is O(P(B+n))
• We do ‘P’ passes, each of which is a Bucket Sort

07/22/2022 82

Sorting Summary
• Simple O(n2) sorts can be fastest for small n

• selection sort, insertion sort (latter linear for mostly-sorted)
• good for “below a cut-off” to help divide-and-conquer sorts

• O(n log n) sorts
• heap sort, in-place but not stable nor parallelizable
• merge sort, not in place but stable and works as external sort
• quick sort, in place but not stable and O(n2) in worst-case

• often fastest, but depends on costs of comparisons/copies

• W (n log n) is worst-case and average lower-bound for sorting by comparisons
• Non-comparison sorts

• Bucket sort good for small number of key values
• Radix sort uses fewer buckets and more phases

• Best way to sort? It depends!

07/22/2022 83

6/24/2022

pollev.com/artliu

Sorting our Sorts! Try to do this without looking at your notes

84

Run-time Stable Space

Insertion Sort

Selection Sort

Heap Sort

Merge Sort

Quick Sort
(Hoare’s Partition)
Radix Sort

6/24/2022

pollev.com/artliu

Sorting our Sorts! Try to do this without looking at your notes

85

Run-time Stable Space

Insertion Sort Best Case: O(N)
Worst Case: O(N2)
Average Case: O(N2)

Yes O(1)

Selection Sort O(N2) No O(1)

Heap Sort O(N log N) No O(1)

Merge Sort O(N log N) Yes O(N)

Quick Sort
(Hoare’s Partition)

Best Case: O(N log N)
Worst Case: O(N2)
Average Case: O(N log N)

No O(1)

Radix Sort O(P(B + N)) Yes O(B + N)

