
CSE 332: Data Structures & Parallelism
Lecture 9 10: Hashing

Arthur Liu
Summer 2022

7/13/2022 1

Announcements

• Reminder EX05 due tonight!
• P2 Writeup is significant! (A LOT TO WRITE!!)
• Midterm Monday
• Review Session Today at 2:15 MORE 220

7/13/2022 2

Outline for Today

• Hashing
• Hashing
• Collision Handling

• Separate Chaining
• Open Addressing

7/13/2022 3

Motivating Hash Tables
For dictionary with n key/value pairs

* Assuming we must check to see if the key has already been inserted. Cost becomes cost of a find operation, inserting itself is O(1).

7/13/2022 4

insert find delete

Unsorted linked-list O(n)* O(n) O(n)
Unsorted array O(n)* O(n) O(n)
Sorted linked-list O(n) O(n) O(n)
Sorted Array O(n) O(log n) O(n)
Balanced Tree O(log n) O(log n) O(log n)

Motivating Hash Tables
For dictionary with n key/value pairs

* Assuming we must check to see if the key has already been inserted. Cost becomes cost of a find operation, inserting itself is O(1).

7/13/2022 5

insert find delete

Unsorted linked-list O(n)* O(n) O(n)
Unsorted array O(n)* O(n) O(n)
Sorted linked-list O(n) O(n) O(n)
Sorted Array O(n) O(log n) O(n)
Balanced Tree O(log n) O(log n) O(log n)
HashTables O(1) O(1) O(1) (average)

Really Big Array – my idea J

7/13/2022 6

Really Big Array – my idea J

0

1

2

3

4

…

9,999,999

Keys: Student ID’s
0 – 9,999,999

7/13/2022 7

Really Big Array – my idea J

0

1

2

3

4

…

9,999,999

Keys: Student ID’s
0 – 9,999,999

7/13/2022 8

insert(4)

find(4)

delete(4)

Hash Tables
• Aim for constant-time (i.e., O(1)) find, insert, and delete

• “On average” under some reasonable assumptions

• A hash table is an array of some fixed size

7/13/2022 9

0

…

TableSize –1

hash table

key space (e.g., integers, strings)

hash function:
h(key) à int

int mod Tablesize
à index

2015397

2013486
2028689

Basic idea:

Hash Functions
An ideal hash function:
• Is fast to compute
• Is different for any two objects where .equals() == false

• Often impossible in theory; easy in practice
• Will handle collisions a bit later

7/13/2022 10

0

…

TableSize –1

hash table

key space (e.g., integers, strings)

hash function:
h(key) à int

int mod Tablesize
à index

Basic idea:

Who’s Responsible for Making it good
• Clients write good hashCodes for their custom objects, so Hash tables

can be generic
• To store keys of type E, we just need to be able to:

1. Hashable: convert any E to an int
2. Test equality: are you the E I’m looking for?

• When hash tables are a reusable library, the division of responsibility
generally breaks down into two roles:

7/13/2022 11

E int table-index
collision? collision

resolution

client hash table library

Ex: Java!

7/13/2022 12

We will learn both roles, but most programmers “in the real world” spend
more time as clients while understanding the library

E int table-index
collision? collision

resolution

client hash table library

Each Role’s Responsibility to Make It Good

7/13/2022 13

Two roles must both contribute to minimizing collisions (heuristically)
• Client should aim for different ints for different items
– Avoid “wasting” any part of E or the 32 bits of the int

• Library should aim for putting “similar” ints in different indices
– conversion to index is almost always “mod table-size”
– using prime numbers for table-size is common

E int table-index
collision? collision

resolution

client hash table library

Hashing integers (try it out)
key space = integers

Simple hash function:
• Client: h(x) = x
• Library: g(x) = h(x) % TableSize
• Fairly fast and natural

Example:
• TableSize = 10
• Insert 7, 18, 41, 34, 10

• (As usual, ignoring corresponding data)

7/13/2022 15

0
1
2
3
4
5
6
7
8
9

What to hash?

If you have objects with several fields, it is usually best to have most of
the “identifying fields” contribute to the hash to avoid collisions

Example:
class Person {

String first; String middle; String last;
Date birthdate;

}

An inherent trade-off: hashing-time vs. collision-avoidance
Use all the fields?
Use only the birthdate?
Admittedly, what-to-hash is often an unprincipled guess L

7/13/2022 17

What if the key is not an int?
• If keys aren’t ints, the client must convert to an int

• Trade-off: speed and distinct keys hashing to distinct int

• Common and important example: Strings
• Key space K = s0s1s2…sm-1

• where si are chars: si Î [0,256]
• Some choices: Which avoid collisions best?

1. h(K) = s0

2. h(K) =

3. h(K) =

1

0

m

i
i
s

-

=

æ ö
ç ÷
è ø
å

÷
ø

ö
ç
è

æ
×å

-

=

1

0
37

m

i

i
is

7/13/2022 18

Then on the library side we
typically mod by Tablesize
to find index into the table

Calculation tricks

• Avoid heavy computation by using tricks!

7/13/2022 19

÷
ø

ö
ç
è

æ
×å

-

=

1

0
37

m

i

i
is

String s;
h = 1;
for (int i = k – 1; i >= 0; i--) {

h = 31 * h + s[i];
}

Math.Pow(37, i) // bad

Specializing hash functions

How might you hash differently if all your strings were web addresses
(URLs)?

7/13/2022 20

Aside: Combining hash functions

A few rules of thumb / tricks:

1. Use all 32 bits (careful, that includes negative numbers)

2. Use different overlapping bits for different parts of the hash
• This is why a factor of 37i works better than 256i

3. When smashing two hashes into one hash, use bitwise-xor
• bitwise-and produces too many 0 bits
• bitwise-or produces too many 1 bits

4. Rely on expertise of others; consult books and other resources

5. If keys are known ahead of time, choose a perfect hash

7/13/2022 21

Outline for Today

• Hashing
• Hashing
• Collision Handling

• Separate Chaining
• Open Addressing

7/13/2022 22

Okay so collisions happen…
key space = integers

Simple hash function:
• Client: h(x) = x
• Library: g(x) = h(x) % TableSize
• Fairly fast and natural

Example:
• TableSize = 10
• Insert 7, 18, 41, 34, 10

• (As usual, ignoring corresponding data)

7/13/2022 23

0 10
1 41
2
3
4 34
5
6
7 7
8 18
9

Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-possible-keys exceeds table size

So, hash tables should support collision resolution
• Ideas?

7/13/2022 24

Flavors of Collision Resolution

Separate Chaining

Open Addressing
• Linear Probing
• Quadratic Probing
• Double Hashing

7/13/2022 25

Separate Chaining

7/13/2022 26

0
1
2
3
4
5
6
7
8
9

Chaining: All keys that map to the same
table location are kept in a list (a.k.a. a
“chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

7/13/2022 27

0 /
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /

Chaining: All keys that map to the same
table location are kept in a list (a.k.a. a
“chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

7/13/2022 28

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /
Chaining: All keys that map to the same

table location are kept in a list (a.k.a. a
“chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

7/13/2022 29

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

22 /

Chaining: All keys that map to the same
table location are kept in a list (a.k.a. a
“chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

7/13/2022 30

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

107 /

22 /

Chaining: All keys that map to the same
table location are kept in a list (a.k.a. a
“chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

7/13/2022 31

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

12 22 /

Chaining: All keys that map to the same
table location are kept in a list (a.k.a. a
“chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

107 /

Separate Chaining

7/13/2022 32

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

42

107 /

12 22 /

Chaining: All keys that map to the same
table location are kept in a list (a.k.a. a
“chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Worst case time for find?

Thoughts on separate chaining

33

Worst-case time for find?

• Linear
• But only with really bad luck or bad hash function
• So not worth avoiding (e.g., with balanced trees at each bucket)

• Keep # of items in each bucket small
• Overhead of AVL tree, etc. not worth it if small # items per bucket

Beyond asymptotic complexity, some “data-structure engineering” can improve constant factors
• Linked list vs. array or a hybrid of the two
• Move-to-front (part of Project 2)
• Leave room for 1 element (or 2?) in the table itself, to optimize constant factors for the

common case
• A time-space trade-off…

7/13/2022

Time vs. space
(only makes a difference in constant factors)

7/13/2022 34

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

42

107 /

12 22 /

0 10 /
1 / X
2 42
3 / X
4 / X
5 / X
6 / X
7 107 /
8 / X
9 / X

12 22 /

More rigorous separate chaining analysis

Definition: The load factor, l, of a hash table is

7/13/2022 35

N
TableSize

l =
¬ number of elements

Under chaining, the average number of elements per bucket is ___

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against ____ items
• Each successful find compares against _____ items

• How big should TableSize be??

More rigorous separate chaining analysis

Definition: The load factor, l, of a hash table is

7/13/2022 36

N
TableSize

l =
¬ number of elements

Under chaining, the average number of elements per bucket is l

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against l items
• Each successful find compares against l / 2 items
• If l is low, find & insert likely to be O(1)
• We like to keep l around 1 for separate chaining

Load Factor?

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

42

86 /

12 22 /

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ?

7/13/2022 37

Load Factor?

0

1

2

3

4 /

5

6

7

8

9

10 /

42

86 /

12 22 /

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ?

71 2 31 /

63 73 /

75 5 65 95 /

27 47

88 18 38 98 /

99 /

7/13/2022 39

Separate Chaining Deletion?

7/13/2022 41

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

42

107 /

12 22 /

Separate Chaining Deletion

42

• Not too bad
• Find in table
• Delete from bucket

• Say, delete 12
• Similar run-time as insert

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

42

107 /

12 22 /

7/13/2022

Motivating Hash Tables
For dictionary with n key/value pairs

* Assuming we must check to see if the key has already been inserted. Cost becomes cost of a find operation, inserting itself is O(1).

7/13/2022 43

insert find delete

Unsorted linked-list O(n)* O(n) O(n)
Unsorted array O(n)* O(n) O(n)
Sorted linked-list O(n) O(n) O(n)
Sorted Array O(n) O(log n) O(n)
Balanced Tree O(log n) O(log n) O(log n)
HashTables O(1) O(1) O(1) (average)

Why Hash Tables are a great approximation of our Really Big Array

Not that many elements that we need to store
• There are m possible keys (m typically large, even infinite)
• We expect our table to have only n items
• n is much less than m (often written n << m)

Many dictionaries have this property
• Compiler: All possible identifiers allowed by the language vs. those used in some file of

one program
• Database: All possible student names vs. students enrolled
• AI: All possible chess-board configurations vs. those considered by the current player
• …

7/13/2022 44

Aside: Hash Tables vs. Balanced Trees
• In terms of a Dictionary ADT for just insert, find, delete, hash

tables and balanced trees are just different data structures
• Hash tables O(1) on average (assuming few collisions)
• Balanced trees O(log n) worst-case

• Constant-time is better, right?
• Yes, but you need “hashing to behave” (must avoid collisions)
• Yes, but what if we want to findMin, findMax, predecessor, and
successor, printSorted?
• Hashtables are not designed to efficiently implement these operations

7/13/2022 45

Client Collision Avoidance: Recall Our Ideal
An ideal hash function:
• Is different for any two objects where .equals() == false

• Often impossible in theory; easy in practice
• Will handle collisions a bit later

• Is fast to compute

7/13/2022 46

0

…

TableSize –1

hash table

key space (e.g., integers, strings)

hash function:
h(key) à int

int mod Tablesize
à index

Basic idea:

But making Sure It’s Still Correct
A correct hash function:
• Any two objects where .equals() == true must return

the same hashcode!
• If you update .equals(), you should update your hashCode() and

vice-versa

7/13/2022 47

0

…

TableSize –1

hash table

key space (e.g., integers, strings)

hash function:
h(key) à int

int mod Tablesize
à index

Basic idea:

🚨🚨🚨 Sneaky Bug Alert 🚨🚨🚨

7/13/2022 48

Spot the bug >:C

// not the most ideal hashcode, but

// there’s a fatal error

int hashCode() {

int hash = 0;

for (int i = 0; i < arr.length; i++) {

hash += arr[i];

}

return hash;

}

7/13/2022 49

13 15 12 0 0 0

3

arr

size

13 15 12 0 0 0 -3 -5

3

arr

size

ArrayList a ArrayList b

Are these two ArrayList’s equal()?

What’s the error with the
hashCode()?

pollev.com/artliu

Hashing and Equality

• Our use of int key can lead to us overlooking a critical detail:
• We initially hash E to get a table index
• While chaining or probing we need to determine if this is the E that I am

looking for… ie: equality testing!!!

• So a hash table needs a hash function and an equality testing
• In the Java library each object has an equals method and a
hashCode method

class Object {
boolean equals(Object o) {…}
int hashCode() {…}
…

}

7/13/2022 50

Equal objects must hash the same

The Java library (and your project hash table) make a very important assumption
that clients must satisfy…

• Object-oriented way of saying it:
If a.equals(b), then we must require a.hashCode()==b.hashCode()

• Function object way of saying it:
If c.compare(a,b) == 0, then we must require
h.hash(a) == h.hash(b)

• If you ever override equals
• You need to override hashCode also in a consistent way
• See CoreJava book, Chapter 5 for other "gotchas" with equals

7/13/2022 51

By the way: comparison has rules too

We have not emphasized important “rules” about comparison for:
• All our dictionaries
• Sorting (next major topic)

Comparison must impose a consistent, total ordering:

For all a, b, and c,
• If compare(a,b) < 0, then compare(b,a) > 0
• If compare(a,b) == 0, then compare(b,a) == 0
• If compare(a,b) < 0 and compare(b,c) < 0, then compare(a,c) < 0

7/13/2022 52

Outline

• Next time
• 3 flavors of open addressing (collision resolution)
• More hashing in practice

7/13/2022 53

