
Hash Functions
An ideal hash function:
• Is fast to compute
• Is different for any two objects where .equals() == false

• Often impossible in theory; easy in practice
• Will handle collisions a bit later

7/13/2022 10

0

…

TableSize –1

hash table

key space (e.g., integers, strings)

hash function:
h(key) à int

int mod Tablesize
à index

Basic idea:

10

Hashing integers (try it out)
key space = integers

Simple hash function:
• Client: h(x) = x

• Library: g(x) = h(x) % TableSize

• Fairly fast and natural

Example:

• TableSize = 10

• Insert 7, 18, 41, 34, 10
• (As usual, ignoring corresponding data)

7/13/2022 15

0
1
2
3
4
5
6
7
8
9

15

What if the key is not an int?
• If keys aren’t ints, the client must convert to an int

• Trade-off: speed and distinct keys hashing to distinct int

• Common and important example: Strings
• Key space K = s0s1s2…sm-1

• where si are chars: si Î [0,256]

• Some choices: Which avoid collisions best?

1. h(K) = s0

2. h(K) =

3. h(K) =

1

0

m

i
i
s

-

=

æ ö
ç ÷
è ø
å

÷
ø

ö
ç
è

æ
×å

-

=

1

0
37

m

i

i
is

7/13/2022 18

Then on the library side we
typically mod by Tablesize
to find index into the table

18

Separate Chaining

7/13/2022 26

0
1
2
3
4
5
6
7
8
9

Chaining: All keys that map to the same
table location are kept in a list (a.k.a. a
“chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

26

More rigorous separate chaining analysis

Definition: The load factor, l, of a hash table is

7/13/2022 35

N
TableSize

l =
¬ number of elements

Under chaining, the average number of elements per bucket is ___

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against ____ items
• Each successful find compares against _____ items

• How big should TableSize be??

35

