
7/10/22

1

Two Principles

Temporal Locality:
• If you use some piece of memory, you are likely to use that exact data again

pretty soon.

Spatial Locality:
• If you use some piece of memory, you are likely to use nearby data pretty soon.

OS accomplishes this by:
Keeping recently used memory in the cache
Moving memory in “pages” (blocks/pages/lines) – if you access one data point,
you move everything nearby with it

7/11/2022 10

10

B+ Trees Parameters (we and the book say “B Trees”)
• Two types of nodes: internal nodes & leaves

• Each internal node has room for up to M-1
keys and M children
• Does not store values
• Function as “sign-posts”

• Leaf nodes have up to L sorted data items

3 7 12 21

21£x12£x<217£x<123£x<7x<3

3 “cat”

14 “apple”

15 “purple”

21 “ideas”

ptr1 3 ptr2 7 ptr3 12 ptr4 21 ptr5

7/11/2022 16

16

7/10/22

2

Example
Suppose M=4 (max # pointers in internal node and L=5 (max # data items at leaf)

• All internal nodes have at least 2 children
• All leaves have at least 3 data items (only showing keys)
• All leaves at same depth

6
8
9
10

12
14
16
17

20
22

27
28
32

34
38
39
41

44
47
49

50
60
70

12 44

6 20 27 34 50

19

24

1
2
4

Note on notation: Inner nodes drawn horizontally,
leaves vertically to distinguish. Include empty cells

7/11/2022 19

19

Some Formulas You Should Be Able to Derive

Size of Internal Node:
𝑀 − 1 ⋅ 𝑘𝑒𝑦 +𝑀 ⋅ 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ≤ 𝑝𝑎𝑔𝑒

Size of Leaf Node:
𝐿 ⋅ 𝑑𝑎𝑡𝑎 ≤ 𝑝𝑎𝑔𝑒

Rearranging for M and L

𝑀 = !"#$%&$'
!()*+$,%&$'

L= !"#$
-"+"

12 44

6
8
9
10

7/11/2022 24

24

