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Announcements

• In-class Midterm Next Monday!
• Be here on time, we will start promptly at 9:40-10:40am to give you the full hour
• Midterm Resources will be posted later today
• Midterm Review Session on Friday time TBD
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delete(5)

The easiest solution involves replacing the deleted node 
with its successor (7) or predecessor (4) value.

• “Easiest” because we know exactly where the rest 
of the subtrees should go.

Cases:
• Replacement node has no children -> then nothing 

to worry about!
• Replacement node has 1 children -> just replace 

the replacement node with that child
• Replacement node has 2 children(?) (This case 

cannot happen!)

Deletion – The Two Child Case

2092

155

12

307 17104

3 8
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Outline for Today

• Finish AVL
• How to handle insertion (4 cases)
• AVL size math (and height guarantees)

• B-Trees
• Motivating B-Trees, a memory perspective
• B-Tree structure
• B-Tree methods

• Insertion AND deletion

7/11/2022 4



Dictionaries Review

We’ve talked about 1.5 “standard” dictionaries:
AVL Trees – O(log n) find, insert, and delete
• Optimize for worst case
• BST can only give average case logarithmic

Today: A New Problem
Design Goal: Optimize behavior for huge datasets
• Need to understand how memory works
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A false assumption

We said “every operation takes about the same time”
In order to do big-O analysis

Most of the time this is true.
It’s always true up to a constant factor
• But what if that constant is 5,000,000?

Today: What to do when your dictionary is huge
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A typical hierarchy
“Every desktop/laptop/server is 

different” but here is a 
plausible configuration these 
days

CPU

Disk: 1TB = 240

Main memory: 8GB = 233

L2 Cache: 2MB = 221

L1 Cache: 128KB = 217

instructions (e.g., addition): 230/sec

get data in L1: 229/sec = 2 instructions

get data in L2: 225/sec = 30 
instructions 

get data in main memory:
222/sec = 250 instructions 

get data from “new 
place” on disk:
27/sec =8,000,000

instructions
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A typical hierarchy

CPU

Disk: 1TB = 240

Main memory: 8GB = 233

L2 Cache: 2MB = 221

L1 Cache: 128KB = 217

1 second

2 seconds

30 seconds

4 minutes

3 months
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Why have we not noticed this?

Very smart people work on algorithms to quickly decide what 
memory to put in caches (in case you need it again).
If your data fits in the cache, you’ll probably never notice.
Compiler optimizations can sometimes ask for data before you need 
it.

When you ask for one piece of data, the OS will give you that, and 
everything near it. 
• It’s likely to be used soon (think arrays). 
Once you use a value, the OS will keep it in a close by cache.
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Two Principles

Temporal Locality:
• If you use some piece of memory, you are likely to use that exact data again 

pretty soon. 

Spatial Locality:
• If you use some piece of memory, you are likely to use nearby data pretty soon.

OS accomplishes this by:
Keeping recently used memory in the cache
Moving memory in “pages” (blocks/pages/lines) – if you access one data point, 
you move everything nearby with it
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Pause to Ponder

We’ve seen two dictionary types:
Search tree-based dictionaries
Array-based dictionaries

Which one should we use when we have a huge dataset?

pollev.com/artliu
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Memory Accesses – Dictionaries 

Suppose we have a dictionary with about 2!" elements.
Could store as an AVL tree of height about 50.
How many disk accesses might it take to find?

What if we made the tree shorter?
Make it an $-ary tree, not a binary tree. 

Disk accesses? Only 50 log# 2
If $ = 30, we’ll cut the memory accesses to about 10.
$ will often be even bigger.
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M is not entirely free

• # hops for find?
• Approx. logM n hops instead of log2 n (for balanced BST)

• But how do we decide which branch to take?
• Use binary search at every branch node log2 m
• Need to pick an M so binary search happens within one memory block

• Runtime of find if balanced: O(log2 M logM n)
• logM n is the height we traverse, log2 M is the cost at every node
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Some flaws of just an M-ary tree

• Storing real data at inner-nodes seems wasteful
• A lot of the times we are just “passing through” a node on the way to the 

node that we are actually looking for
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Key: 7
Value: 
<TheBeeMovie.mp
4TheBeeMovie.mp
4TheBeeMovie.mp
4>
Children Pointers:
Ptr1, ptr2, ptr3, 
ptr4, ptr5

Disk Block:



Outline for Today

• Finish AVL
• How to handle insertion (4 cases)
• AVL size math (and height guarantees)

• B-Trees
• Motivating B-Trees, a memory perspective
• B-Tree structure
• B-Tree methods

• Insertion AND deletion
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B+ Trees Parameters (we and the book say “B Trees”)
• Two types of nodes: internal nodes & leaves

• Each internal node has room for up to M-1
keys and M children
• Does not store values
• Function as “sign-posts”

• Leaf nodes have up to L sorted data items

3 7 12 21

21£x12£x<217£x<123£x<7x<3

3 “cat”

14 “apple”

15 “purple”

21 “ideas”

ptr1 3 ptr2 7 ptr3 12 ptr4 21 ptr5
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Find

• Different from BST in that we don’t store data at internal nodes

• But find is still an easy root-to-leaf recursive algorithm
• At each internal node do binary search on (up to) M-1 keys to find the 

branch to take
• At the leaf do binary search on the (up to) L data items

• But to get logarithmic running time, we need a balance 
condition…

3 7 12 21

21£x12£x<217£x<123£x<7x<3
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Structure Properties
• Root (special case)

• If tree has £ L items, root is a leaf (if almost empty – this should be very rare)
• Else has between 2 and M children

• Internal nodes
• Have between éM/2ù and M children, i.e., at least half full

• Leaf nodes
• All leaves at the same depth
• Have between éL/2ù and L data items, i.e., at least half full

Any M > 2 and L will work, but:
We pick M and L based on disk-block size
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Example
Suppose M=4 (max # pointers in internal node and L=5 (max # data items at leaf)

• All internal nodes have at least 2 children
• All leaves have at least 3 data items (only showing keys)
• All leaves at same depth

6
8
9
10

12
14
16
17 

20
22

27
28
32

34
38
39
41

44
47
49 

50
60
70

12 44

6 20 27 34 50

19 

24

1
2
4

Note on notation: Inner nodes drawn horizontally, 
leaves vertically to distinguish.  Include empty cells
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Is this balance condition good enough?

Not hard to show height h is logarithmic in number of data items n
• Let M > 2 (if M = 2, then a list tree is legal – no good!)
• Because all nodes are at least half full (except root may have only 2 children) 

and all leaves are at the same level, the minimum number of data items n for 
a height h>0 tree is…

minimum number
of leaves

minimum data 
per leaf

+ ³ 2 $
2

$%& ,
2

Minimum branching at root
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Example Scenario

Suppose we have 100,000,000 items
Maximum height of AVL tree?

Maximum height of B tree with M = 128 and L = 64?

+ ³ 2 $
2

$%& ,
2
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Example Scenario

Suppose we have 100,000,000 items
Maximum height of AVL tree?
37 (Recall: S(h) = 1 + S(h-1) + S(h-2)

Maximum height of B tree with M = 128 and L = 64?
5 (Recall: n ³ 2 éM/2ù h-1 éL/2ù) 

+ ³ 2 $
2

$%& ,
2
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How do we pick M and L?

We need to make sure M is as large as possible (to make tree as 
shallow as possible)

But…

We need to also make sure that internal node and leaf node both 
completely fit inside a page block. (Otherwise, binary searching 
within a singular node can be really expensive!) 
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Some Formulas You Should Be Able to Derive

Size of Internal Node:
!− 1 ⋅ %&' +! ⋅ )*+,-&. ≤ )01&

Size of Leaf Node:
2 ⋅ 30-0 ≤ )01&

Rearranging for M and L

! = !"#$%&$'
!()*+$,%&$' L= !"#$-"+"

12 44

6
8
9
10

7/11/2022 24



B-Trees and Disks <3

What makes B-trees so disk friendly?

• Many keys stored in one internal node
• All brought into memory in one disk access

• Internal nodes contain only keys
• Any find wants only one data item; wasteful to load unnecessary items 

with internal nodes
• Data-item size doesn’t affect what M is
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Outline for Today

• Finish AVL
• How to handle insertion (4 cases)
• AVL size math (and height guarantees)

• B-Trees
• Motivating B-Trees, a memory perspective
• B-Tree structure
• B-Tree methods

• Insertion AND deletion
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Add Example (1 of 4)

Split the 
leaf

add(32)

Add 32, 36, 15, 16, 12, 40
M=3, L=3

3

14

18

30

18

3

14

18

30

32

18

add(36)

3

14

18

30

18 32

32

36
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Add Example (2 of 4)

Split the leaf again, 
but now the parent is 
full!

add(15)

3

14

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36 add(16)

3

14

15

18

30

18 32

32

36

16

15

16

18

30

18 32

32

36

15

3

14
Add 32, 36, 15, 16, 12, 40
M=3, L=37/11/2022 28



Add Example (3 of 4)

Split the parent (in this case, the 
root)

Add 32, 36, 15, 16, 12, 40
M=3, L=3

15

16

18

30

18 32

32

36

15

3

14
15

16

18

30

15

32

36

3

14

18

32
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Add Example (4 of 4)

Add 32, 36, 15, 16, 12, 40
M=3, L=3

15

16

18

30

15

32

36

3

14

18

32

15

16

18

30

15

32

36

40

3

12

14

18

32

add(12)
add(40)
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B+ Tree Add Algorithm (1 of 3)

1. Add the value to its leaf in key-sorted order

2. If the leaf now has L+1 items, overflow:
• Split the leaf into two leaves:
• Original leaf with éL/2ù smaller items
• New leaf with ëL/2û = éL/2ù larger items
• Attach the new leaf to its parent
• Add a new key (smallest key in new leaf) to parent in sorted order

If step (2) caused the parent to have M+1 children, …
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B+ Tree Add Algorithm (2 of 3)

3. If step (2) caused an internal node to have M+1 children
• Split the internal node into two nodes
• Original node with é(M+1)/2ù smaller keys
• New node with ë(M+1)/2û = éM/2ù larger keys
• Attach the new internal node to its parent
• Move the median key (smallest key in new node) to parent in sorted order
• If step (3) caused the parent to have M+1 children, repeat step (3) on the 

parent

4. If step (3) caused the root to have M+1 children
• Split the old root into two internal nodes, then add them to a newly-created 

root as described in step (3)
• This is the only case that increases the tree height!
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B+ Tree Add Algorithm (3 of 3)

Split the leaf into two leaves:
• Original leaf with é(L+1)/2ù smaller items
• New leaf with ë(L+1)/2û = éL/2ù larger items
Attach the new leaf to its parent
• Copy a new key (smallest key in new leaf) to 

the parent in sorted order

Split the internal node into two leaves:
• Original node with é(M+1)/2ù smaller items
• New node with ë(M+1)/2û = éM/2ù larger items
Attach the new internal node to its parent
• Move the median key (smallest key in new node) to 

the parent in sorted order

Split the root into two internal nodes:
• Left node with é(M+1)/2ù smaller items
• Right node with ë(M+1)/2û = éM/2ù larger items
Attach the internal nodes to the new root
• Move the median key (smallest key in new right node) to the root
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B+ Tree Add: Efficiency (1 of 2)

• Find correct leaf: O(log2 M logM n)
• Add (key, value) pair to leaf:  O(L)
• Why?

• Possibly split leaf: O(L)
• Why?

• Possibly split parents all the way up to root: O(M logM n)
• Why?

• Total: O(L + M logM n)
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B+ Tree Add: Efficiency (2 of 2)

• Worst-case runtime is O(L + M logM n)!

• But the worst-case isn’t that common!
• Splits are uncommon

• Only required when a node is full
• M and L are likely to be large and, after a split, nodes will be half empty

• Splitting the root is extremely rare
• Remember that our goal is minimizing disk accesses!  Disk accesses are 

still bound by O(logM n)
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Remove Example:

• Remove 32, 15, 16, 14, 18
• M=3, L=3
• Min #children = 2
• Min #items = 2

15

16

18

30

15

32

36

38

3

12

14

18

32 40

40

45

7/11/2022 36



Remove Example: Answer (1 of 8)

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

15

16

18

30

15

36

38

3

12

14

18

36 40

remove(32) 40

45

15

16

18

30

15

32

36

38

3

12

14

18

32 40

40

45
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Remove Example: Answer (2 of 8)

16

18

30

36

38

3

12

14

18

36 40

remove(15) 40

45

15

16

18

30

15

36

38

3

12

14

18

36 40

40

45

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

Adopt an item from a 
neighbor leaf
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Remove Example: Answer (3 of 8)

14 18

30

14

36

38

3

12

18

36 40

remove(16) 40

45

14

16

18

30

14

36

38

3

12

18

36 40

40

45

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

Merge with a neighbor leaf
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Remove Example: Answer (4 of 8)

18

30

36

38

18

40

45

3

12

14

36

40

18

30

36

38

3

12

14

18

36 40

40

45

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

Adopt from a neighbor node
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Remove Example: Answer (5 of 8)

18

30

36

38

18

40

45

3

12

36

40

18

36

40

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

18

30

36

38

40

45

3

12

14

remove(14)
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Remove Example: Answer (6 of 8)

30

36

38

40

45

3

12

36

40

18

36

40

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

18

30

36

38

40

45

3

12

remove(18)

Merge with a neighbor leaf
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Remove Example: Answer (7 of 8)

36

38

36 40

40

45

3

12

30

36

40

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

36

38

40

45

3

12

30

Merge with a neighbor node
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Remove Example: Answer (8 of 8)

36

38

36 40

40

45

3

12

30

36 40

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

36

38

40

45

3

12

30
Delete the old root
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B+ Tree Remove Algorithm (1 of 3)

1. Remove the item from its leaf

2. If the leaf now has éL/2ù-1, underflow:
• If a neighbor has > éL/2ù items, adopt
• Move parent’s key down, and neighbor’s adjacent key up
• Else, merge leaf with neighbor
• Guaranteed to have a legal number of items
• Remove parent’s key and move grandparent’s key down
• Parent now has one less leaf

If step (2) caused the parent to have éM/2ù-1 children, …
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B+ Tree Remove Algorithm (2 of 3)

3. If step (2) caused an internal node to have  éM/2ù-1 children
• If a neighbor has > éM/2ù keys, adopt and update parent
• Move parent’s key down, and neighbor’s adjacent key up
• Else, merge with neighbor node
• Guaranteed to have a legal number of keys
• Remove parent’s key and move grandparent’s key down
• Parent now has one less node, may need to continue up the tree

4. If step (3) caused the root to have have éM/2ù-1 children
• If root went from 2 children to 1 child, move key down and make the child 

the new root
• This is the only case that decreases the tree height!
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B+ Tree Remove Algorithm (3 of 3)

If a neighbor leaf has > éL/2ù items,
adopt:

Move parent’s key down, and 
neighbor’s adjacent key up

Else merge leaf with neighbor:
Guaranteed to have a legal number 
of items
Remove parent’s key and move 
grandparent’s key down
Parent now has one less leaf

If a neighbor node has > éM/2ù
items, adopt:

Move parent’s key down, and 
neighbor’s adjacent key up

Else merge node with neighbor:
Guaranteed to have a legal 
number of keys
Remove parent’s key and move 
grandparent’s key down
Parent now has one less node

7/11/2022 47



B+ Tree Remove: Efficiency (1 of 2)

• Find correct leaf: O(log2 M logM n)
• Remove item from leaf: O(L)
• Why?

• Possibly adopt from or merge with neighbor leaf: O(L)
• Why?

• Possibly adopt or merge parent node up to root: O(M logM
n)
• Why?

• Total: O(L + M logM n)
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B+ Tree Remove: Efficiency (2 of 2)

• Worst-case runtime is O(L + M logM n)!

• But the worst-case isn’t that common!
• Merges are uncommon

• Only required when a node is half empty
• M and L are likely large and, after a merge, nodes will be completely full

• Shrinking the height by removing the root is extremely rare
• Remember that our goal is minimizing disk accesses!  Disk accesses are 

still bound by O(logM n)
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Outline for Today

• Finish AVL
• How to handle insertion (4 cases)
• AVL size math (and height guarantees)

• B-Trees
• Motivating B-Trees, a memory perspective
• B-Tree structure
• B-Tree methods

• Insertion AND deletion
• B-Tree wrap-up
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B+ Trees in Java?

• For most of our data structures, we encourage writing high-level, 
reusable code.  Eg, using Java generics in our projects

• It’s a bad idea for B+ Trees, however
• Java can do balanced trees!  It can even do other B-Trees, such as the 2-3 

tree (which resembles a B+ Tree with M=3)
• Java wasn’t designed for things like managing disk accesses, which is the 

whole point of B+ Trees
• The key issue is Java’s extra levels of indirection…
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Possible Java Implementation: Code

Even if we assume int keys, Java’s data representation doesn’t 
match what we want out of a B+ Tree

class BTreeNode<E> {  // internal node
static final int M = 128;
int[]          keys = new int[M-1];
BTreeNode<E>[] children = new BTreeNode[M];
int numChildren = 0;
…

}

class BTreeLeaf<E> {  // leaf node
static final int L = 32;
int[] keys = new int[L-1];
E[]   items = new Object[L];
int   numItems = 0;
…

}
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Possible Java Implementation: Box-and-Arrows

(array of M-1 ints)

(array of M refs to 
BTreeNodes)

(array of L refs to item objects)

All the red references indicate “unnecessary” indirection that 
might be avoided in another programming language!

BTreeNode (internal node)

70numChildren

children

keys

BTreeLeaf (leaf node)

20numItems

items

Item objects not in contiguous memory

… 12 20 45 …

… …

… …
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B+ Trees in Java: The Moral of the Story

• The whole idea behind B+ trees was to keep related data in 
contiguous memory

• But this runs counter to the code and patterns Java encourages
• Java’s implementation of generic, reusable code is not want you want for 

your performance-critical web-index

• Other languages (e.g., C++) have better support for “flattening 
objects into arrays” in a generic, reusable way

• Levels of indirection matter!
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Conclusion: Balanced Trees

• Balanced trees make good dictionaries because they guarantee 
logarithmic-time find, insert, and delete
• Essential and beautiful computer science
• But only if you can maintain balance within the time bound

• AVL trees maintain balance by tracking height and allowing all children 
to differ in height by at most 1

• B trees maintain balance by keeping nodes at least half full and all 
leaves at same height

• Other great balanced trees (see text; worth knowing they exist)
• Red-black trees: all leaves have depth within a factor of 2
• Splay trees: self-adjusting; amortized guarantee; no extra space for height 

information
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