
CSE 332: Data Structures & Parallelism
Lecture 6: Dictionaries; Binary Search Trees

Arthur Liu
Summer 2022

7/06/2022 1

Announcements

• Fill out partner form by 6pm tonight!
• EVERYONE must fill it out, even if same partner or working by yourself
• You will not receive a repo if you do not fill it out in time

• We will leave feedback on P1 writeup
• Not graded as harshly, but make sure you look at your feedback to use for

P2 writeup!

• Exercise 3 and Exercise 4 due Friday

7/06/2022 2

CS (can be) frustrating

But that is part of being an expert programmer! (And the 3 seconds of
feeling awesome after you figure it out)
Expert Programmer duties include:
• Writing expert level bugs
• Removing expert level bugs

Strategies Include:
• Stare and Hope
• ”Shotgun” debugging
• Other (SEE COURSE WEBSITE HANDOUT!)

7/06/2022 3

Today – Dictionaries and BST

• Finish Big-Oh
• Recursion Analysis
• Amortization
• Proofs

• Dictionary & BST

7/06/2022 4

Where we are

Studying the absolutely essential ADTs of computer science and classic data
structures for implementing them

ADTs so far:

1.Stack: push, pop, isEmpty, …
2.Queue: enqueue, dequeue, isEmpty, …
3.Priority queue: insert, deleteMin, …

Next:
4.Dictionary (a.k.a. Map): associate keys with values

• probably the most common, way more than priority queue

7/06/2022 5

The Dictionary (a.k.a. Map) ADT
• artliu

Arthur
Liu
…

• akkanath
Nathan
Akkaraphab
…

insert(artliu, Arthur Liu)

find(akkanath)

Nathan Akkaraphab,…

We will tend to emphasize the keys, but don’t
forget about the stored values!

Dictionary ADT

State:
• Set of unique (key, value) pairs
• Keys can be compared for

equality
Operations:
• insert(key val) – places (key,val)

in map.
(If key already used, overwrites
existing entry)

• find(key) – returns val associated
with key

• delete(key)

7/06/2022 6

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values
• A key is present or not (no repeats)

For find, insert, delete, there is little difference
• In dictionary, values are “just along for the ride”
• So same data-structure ideas work for dictionaries and sets

• Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations
• union, intersection, is_subset, etc.
• Notice these are binary operators on sets
• We will want different data structures to implement these operators

7/06/2022 7

A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and be able to
retrieve it efficiently – a dictionary is the ADT to use!
• Lots of programs do that!

• Networks: router tables
• Operating systems: page tables
• Compilers: symbol tables
• Databases: dictionaries with other nice properties
• Search: inverted indexes, phone directories, …
• Biology: genome maps
• …

7/06/2022 8

Simple implementations
For dictionary with n key/value pairs. (No duplicates allowed!)

insert find delete

Unsorted
Linked-List

Unsorted Array

Sorted Linked-
List

Sorted Array

7/06/2022 9

Simple implementations
For dictionary with n key/value pairs. (No duplicates allowed!)

insert find delete

Unsorted
Linked-List

O(N) O(N) O(N)

Unsorted Array O(N) O(N) O(N)

Sorted Linked-
List

O(N) O(N) O(N)

Sorted Array O(N) O(log N) O(N)

We’ll see a Binary Search Tree (BST) probably does better, but not in the
worst case unless we keep it balanced
7/06/2022 10

A general technique for making delete as fast as find:
• Instead of actually removing the item just mark it deleted
• No need to shift values, etc.

10 12 24 30 41 42 44 45 50
ü û ü ü ü ü û ü ü

Lazy Deletion (e.g. in a sorted array)

Plusses:
• Simpler
• Can do removals later in batches
• If re-added soon thereafter, just

unmark the deletion

Minuses:
• Extra space for the “is-it-deleted” flag
• Data structure full of deleted nodes wastes

space
• find O(log m) time where m is data-

structure size (m >= n)
• May complicate other operations

7/06/2022 11

Better Dictionary data structures

Will spend the next several lectures looking at dictionaries with three different
data structures

1. AVL trees
• A special binary search trees with guaranteed balancing

2. B-Trees
• Also always balanced, but different and shallower
• B!=Binary; B-Trees generally have large branching factor

3. Hashtables
• Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

7/06/2022 12

Why Trees?

Trees offer speed ups because of their branching factors
• Binary Search Trees are structured forms of binary search

7/06/2022 13

Binary Search

3 4 5 7 8 9 101

find(4)

7/06/2022 14

Binary Search Tree

Our goal is the performance of binary search in a tree
representation

3 4 5 7 8 9 101

7/06/2022 15

Why Trees?

Trees offer speed ups because of their branching factors
• Binary Search Trees are structured forms of binary search

Even a basic BST is fairly good

Insert Find Delete

Worse-Case O(n) O(n) O(n)

Average-Case O(log n) O(log n) O(log n)

7/06/2022 16

Binary Trees

• Binary tree is either
• Empty (ie: null)
• a root (with left and right

subtrees)

• Representation:

A

B

D E

C

F

HG

JI

Data

right
pointer

left
pointer

For a dictionary, data will
include a key and a value

7/06/2022 17

Binary Trees: Some Numbers
Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
• max # of leaves:

• max # of nodes:

• min # of leaves:

• min # of nodes:

7/06/2022 18

Binary Trees: Some Numbers
Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
• max # of leaves:

• max # of nodes:

• min # of leaves:

• min # of nodes:

2h

2(h + 1) - 1
1

h + 1
For n nodes, we cannot do better than O(log n) height,

and we want to avoid O(n) height

7/06/2022 19

Calculating height

What is the height of a tree with root r?
int treeHeight(Node root) {

???

}

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes;
much easier to use recursion’s call stack

7/06/2022 20

Calculating height

What is the height of a tree with root r?

int treeHeight(Node root) {
if(root == null)

return -1;
return 1 + max(treeHeight(root.left),

treeHeight(root.right));
}

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes;
much easier to use recursion’s call stack

7/06/2022 21

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

7/06/2022 22

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree
+ * 2 4 5

• In-order: left subtree, root, right subtree
2 * 4 + 5

• Post-order: left subtree, right subtree, root
2 4 * 5 +

+

*

2 4

5

(an expression tree)

7/06/2022 23

More on traversals
void inOrdertraversal(Node t){

if(t != null) {
traverse(t.left);
process(t.element);
traverse(t.right);

}
}

The difference between the 3 traversals is when process() gets called
Sometimes order doesn’t matter

• Example: sum all elements
Sometimes order matters

• Example: print tree with parent above indented children (pre-order)
• Example: evaluate an expression tree (post-order)

A
B

D
E

C
F
G

A

B

D E

C

F G

7/06/2022 24

Dictionary data structure: Binary Search Tree

4

121062

115

8

14

13

7 9

Defined by these properties:
• Structural property (“binary”)
• each node has £ 2 children
• result: keeps operations simple

• Order property
• all keys in left subtree smaller

than node’s key
• all keys in right subtree larger

than node’s key
• result: easy to find any given key

7/06/2022 25

Are these BSTs?

3

1171

84

5

4

181062

115

8

20

21

7

15

7/06/2022 26

3

1171

84

5

4

181062

115

8

20

21

7

15

Yes No

Are these BSTs?

7/06/2022 27

Find in BST, Recursive

2092

155

12

307 1710

Data find(Key key, Node root){
if(root == null)
return null;

if(key < root.key)
return find(key,root.left);

if(key > root.key)
return find(key,root.right);

return root.data;
}

7/06/2022 28

Find in BST, Iterative

Data find(Key key, Node root){
while(root != null

&& root.key != key) {
if(key < root.key)
root = root.left;

else(key > root.key)
root = root.right;

}
if(root == null)

return null;
return root.data;
}

2092

155

12

307 1710

7/06/2022 29

Other “finding operations”

• Find minimum node

• Find maximum node

2092

155

12

307 1710

7/06/2022 30

Insert in BST

insert(13)
insert(8)
insert(31)

(New) insertions happen
only at leaves – easy!

1. Find
2. Create a new node

2092

155

12

307 1710

7/06/2022 31

Deletion in BST

Why might deletion be harder than insertion?

2092

155

12

307 1710

7/06/2022 32

Deletion
• Removing an item disrupts the tree structure

• Basic idea:
• find the node to be removed,
• Remove it
• “fix” the tree so that it is still a binary search tree

• Three cases:
• node has no children (leaf)
• node has one child
• node has two children

7/06/2022 33

Deletion – The Leaf Case

delete(17)

2092

155

12

307 1710

7/06/2022 34

Deletion – The One Child Case

delete(15)

2092

155

12

307 1710

7/06/2022 35

delete(5)

What can we replace 5 with?

2092

155

12

307 1710

Deletion – The Two Child Case

7/06/2022 36

Deletion – The Two Child Case
Idea: Replace the deleted node with a value guaranteed to be between the two

child subtrees

Two Options:
• successor from right subtree: findMin(node.right)
• predecessor from left subtree: findMax(node.left)

• These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor
• Leaf or one child case – easy cases of delete!

7/06/2022 37

Delete Using Successor

3092

205

12

7 10

delete(5)

findMin(right sub tree) à 7

3092

207

12

10

7/06/2022 38

Delete Using Predecessor

3092

205

12

7 10

delete(5)

findMax(left sub tree) à 2

309

202

12

7 10

7/06/2022 39

BuildTree for BST

We had buildHeap, so let’s consider buildTree

Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
If inserted in given order,
what is the tree?

What big-O runtime for
this kind of sorted input?

Is inserting in the reverse order
any better?

7/06/2022 40

BuildTree for BST

We had buildHeap, so let’s consider buildTree

Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
If inserted in given order,
what is the tree?

What big-O runtime for
this kind of sorted input?

Is inserting in the reverse order
any better?

1

2

3

O(n2)
Not a happy place

7/06/2022 41

Balanced BST

Observation
BST: the shallower the better!
For a BST with n nodes inserted in arbitrary order

Average height is O(log n) – see text for proof
Worst case height is O(n)

Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a Balance Condition that
1. ensures depth is always O(log n) – strong enough!
2. is easy to maintain – not too strong!

7/06/2022 42

Potential Balance Conditions

1. Left and right subtrees of the root
have equal number of nodes

2. Left and right subtrees of the root
have equal height

7/06/2022 43

pollev.com/artliu

Potential Balance Conditions

1. Left and right subtrees of the root
have equal number of nodes

2. Left and right subtrees of the root
have equal height

Too weak!
Height mismatch example:

Too weak!
Double chain example:

7/06/2022 44

Potential Balance Conditions

3. Left and right subtrees of every node
have equal number of nodes

4. Left and right subtrees of every node
have equal height

7/06/2022 45

Potential Balance Conditions

3. Left and right subtrees of every node
have equal number of nodes

4. Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees (2n – 1 nodes)

Too strong!
Only perfect trees (2n – 1 nodes)

7/06/2022 46

