CSE 332: Data Structures & Parallelism Lecture 6: Dictionaries; Binary Search Trees

Arthur Liu Summer 2022

Announcements

- Fill out partner form by 6pm tonight!
 - EVERYONE must fill it out, even if same partner or working by yourself
 - You will not receive a repo if you do not fill it out in time
- We will leave feedback on P1 writeup
 - Not graded as harshly, but make sure you look at your feedback to use for P2 writeup!

Exercise 3 and Exercise 4 due Friday

CS (can be) frustrating

But that is part of being an expert programmer! (And the 3 seconds of feeling awesome after you figure it out)

Expert Programmer duties include:

- Writing expert level bugs winner
- Removing expert level bugs

Strategies Include:

- Stare and Hope
- "Shotgun" debugging
- Other (SEE COURSE WEBSITE HANDOUT!)

Today – Dictionaries and BST

- Finish Big-Oh
 - Recursion Analysis
 - Amortization
 - Proofs
- Dictionary & BST

Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

ADTs so far:

```
1.Stack: push, pop, isEmpty, ...
```

2.Queue: enqueue, dequeue, isEmpty, ...

3. Priority queue: insert, deleteMin, ...

Next:

4.Dictionary (a.k.a. Map): associate keys with values

probably the most common, way more than priority queue

The Dictionary (a.k.a. Map) ADT

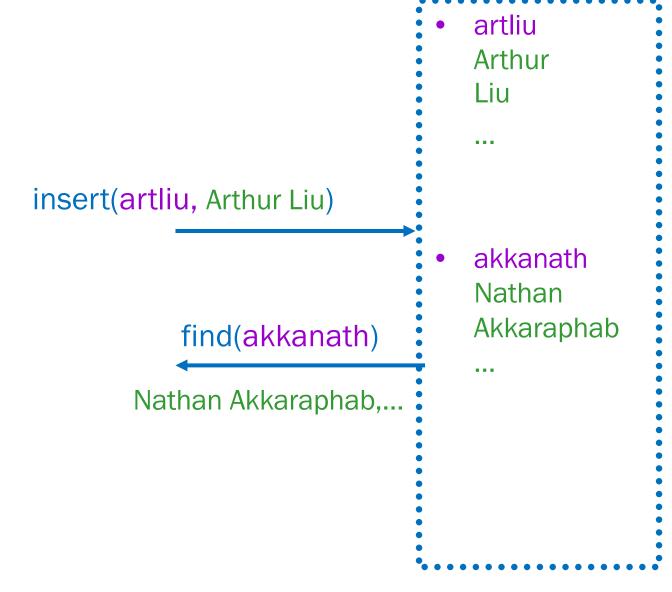
Dictionary ADT

State:

- Set of *unique* (key, value) pairs
- Keys can be compared for equality

Operations:

- insert(key val) places (key,val) in map.
 - (If key already used, overwrites existing entry)
- find(key) returns val associated with key
- delete(key)



We will tend to emphasize the keys, but don't forget about the stored values!

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values

• A key is *present* or not (no repeats)

For **find**, **insert**, **delete**, there is little difference

- In dictionary, values are "just along for the ride"
- So same data-structure ideas work for dictionaries and sets
 - Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations

- union, intersection, is_subset, etc.
- Notice these are binary operators on sets
- We will want different data structures to implement these operators

A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and be able to retrieve it efficiently – a dictionary is the ADT to use!

Lots of programs do that!

Networks: router tables

Operating systems: page tables

Compilers: symbol tables

Databases: dictionaries with other nice properties

Search: inverted indexes, phone directories, ...

Biology: genome maps

• ...

Simple implementations

Morst-case assure arrays enough space

For dictionary with *n* key/value pairs. (No duplicates allowed!)

	insert	find	delete
Unsorted Linked-List	O(N)	0(N)	QN)
Unsorted Array	D(N)	(XN)	0(N)
Sorted Linked- List	6(1)	O(N)	D(N)
Sorted Array	0(n)	0(109 N)	0(N) /2/2
	SWO + insert		X losu) + Oral

Simple implementations

For dictionary with *n* key/value pairs. (No duplicates allowed!)

	insert	find	delete
Unsorted Linked-List	O(N)	O(N)	O(N)
Unsorted Array	O(N)	O(N)	O(N)
Sorted Linked- List	O(N)	O(N)	O(N)
Sorted Array	O(N)	O(log N)	O(N)

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

Lazy Deletion (e.g. in a sorted array)

10	12	24	30	41	42	44	45	50	
√	*	√	√	✓	✓	*	√	✓	6

A general technique for making **delete** as fast as **find**:

- Instead of actually removing the item just mark it deleted
- No need to shift values, etc.

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:

- Extra space for the "is-it-deleted" flag
- Data structure full of deleted nodes wastes space
- **find** $O(\log m)$ time where m is datastructure size (m >= n)
- May complicate other operations

2

Better Dictionary data structures

Will spend the next several lectures looking at dictionaries with three different data structures

0, BST Trees

1. AVL trees

A special binary search trees with guaranteed balancing

2. B-Trees

- Also always balanced, but different and shallower
- B!=Binary; B-Trees generally have large branching factor

3. Hashtables

Not tree-like at all

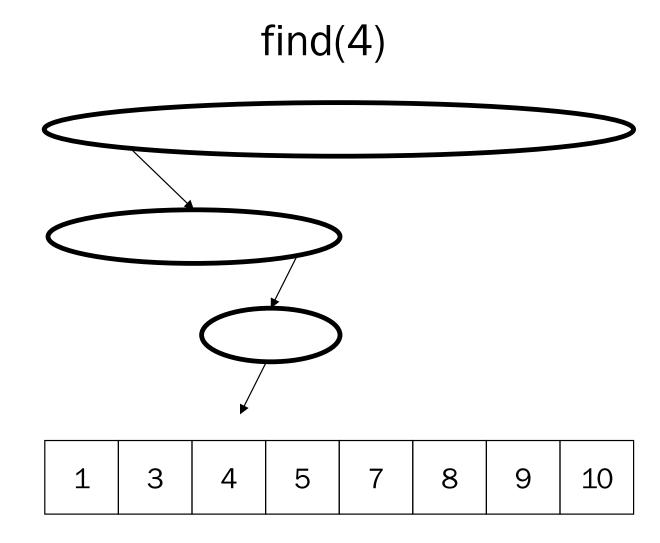
Skipping: Other balanced trees (red-black, splay)

Why Trees?

Trees offer speed ups because of their branching factors

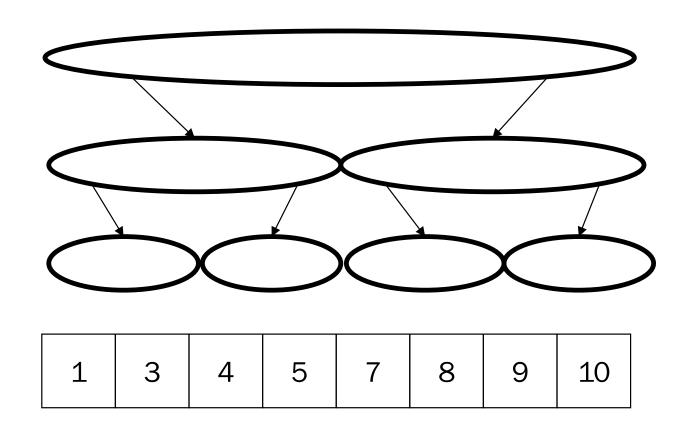
Binary Search Trees are structured forms of binary search

Binary Search



Binary Search Tree

Our goal is the performance of binary search in a tree representation



Why Trees?

Trees offer speed ups because of their branching factors

Binary Search Trees are structured forms of binary search

Even a basic BST is fairly good

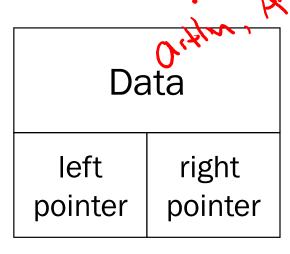
	Insert	Find	Delete	
Worse-Case	O(n)	O(n)	O(n)	<u>ال</u>
Average-Case	O(log n)	O(log n)	O(log n)	

Binary Trees

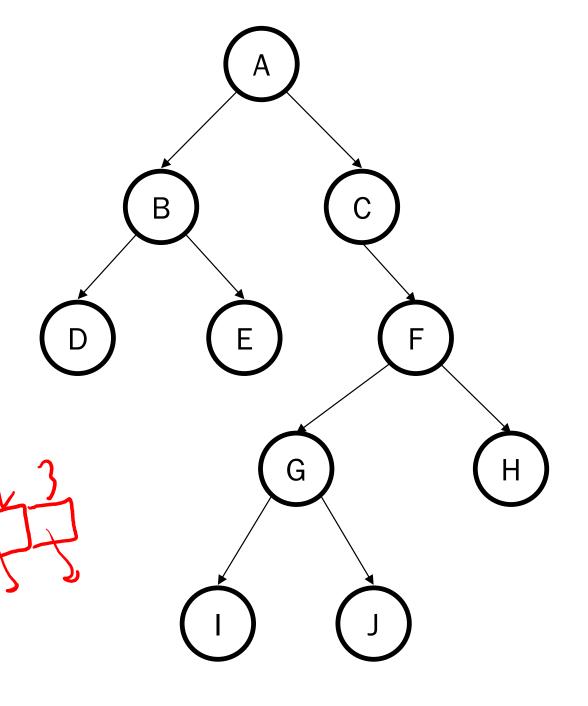
• Binary tree is either

- Empty (ie: null)
- a root (with left and right subtrees)

Representation:



For a dictionary, data will include a key and a value

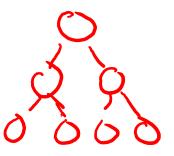


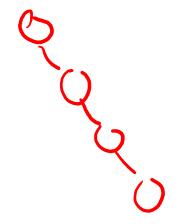
Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height *h*:

- max # of leaves:
- max # of nodes:) 1 \
- min # of leaves:





Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height *h*:

- max # of leaves: 2h
- max # of nodes: $2^{(h+1)} 1$
- min # of leaves: 1
- min # of nodes: h + 1

For n nodes, we cannot do better than $O(\log n)$ height, and we want to avoid O(n) height

Calculating height

What is the height of a tree with root \mathbf{r} ?

```
int treeHeight(Node root) {
   ???
}
```

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes; much easier to use recursion's call stack

Calculating height

What is the height of a tree with root **r**?

```
T(n) = { 1+(n/2) glemin
int treeHeight(Node root) {
 if (root == null) >
    return −1;
 return 1 + max(treeHeight(root.left),
                 treeHeight (root.right));
```

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes; much easier to use recursion's call stack

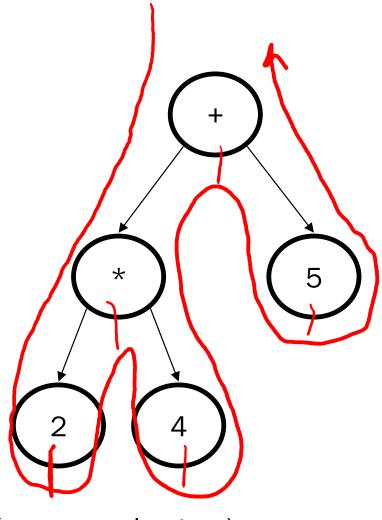
Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree

• *In-order*: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

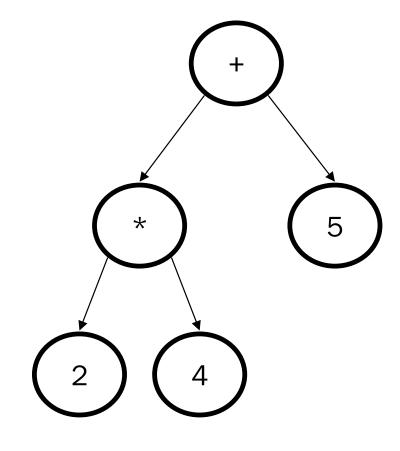


(an expression tree)

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

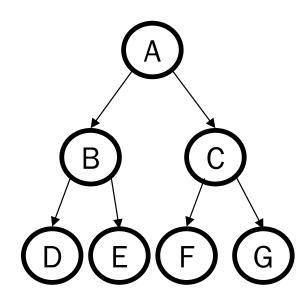
- Pre-order: root, left subtree, right subtree
 + * 2 4 5
- *In-order*: left subtree, root, right subtree 2 * 4 + 5
- Post-order: left subtree, right subtree, root
 24 * 5 +



(an expression tree)

More on traversals

```
void inOrdertraversal(Node t) {
  if(t != null) {
    traverse(t.left);
    process(t.element);
    traverse(t.right);
  }
}
```



The difference between the 3 traversals is when process() gets called

Sometimes order doesn't matter

Example: sum all elements

Sometimes order matters

- Example: print tree with parent above indented children (pre-order)
- Example: evaluate an expression tree (post-order)

В

A

Ε

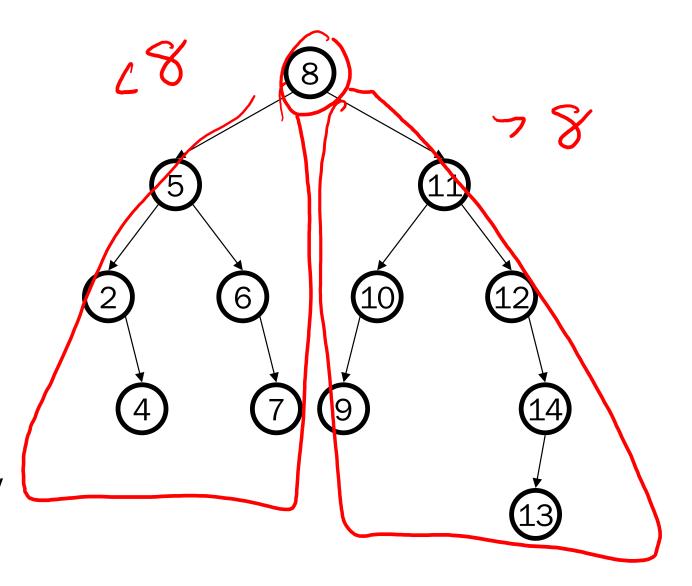
С

G

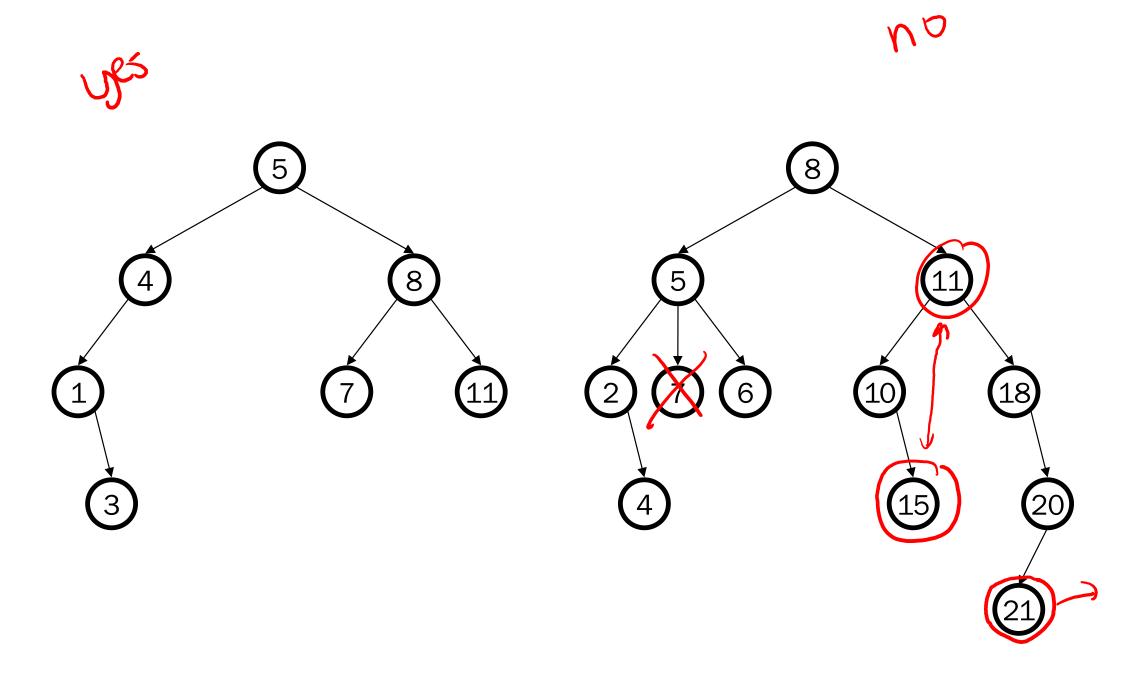
Dictionary data structure: Binary Search Tree

Defined by these properties:

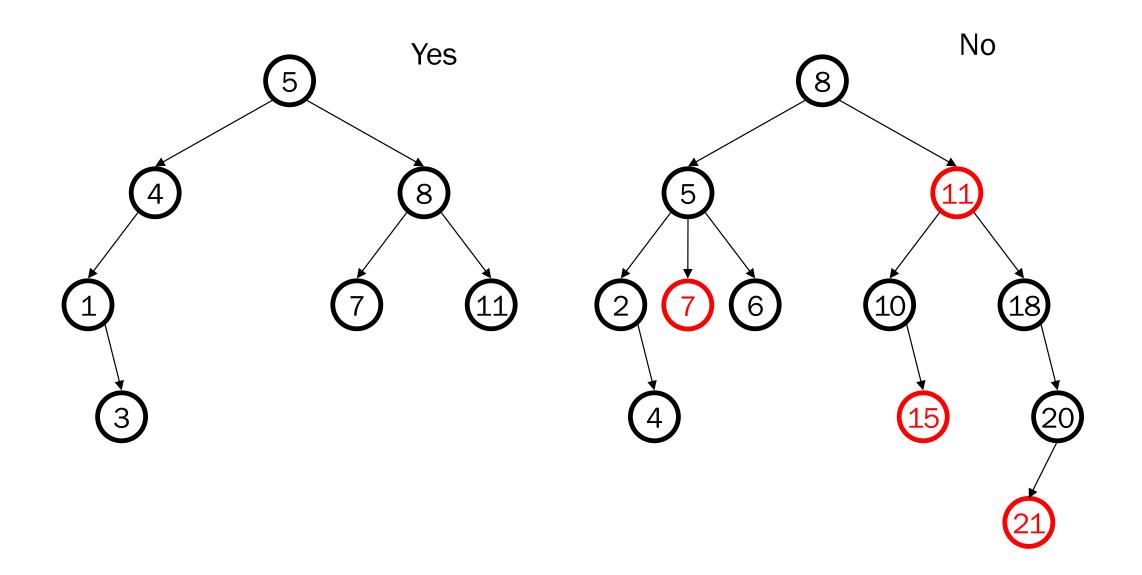
- Structural property ("binary")
 - each node has ≤ 2 children
 - result: keeps operations simple
- Order property
 - all keys in left subtree smaller than node's key
 - all keys in right subtree larger than node's key
 - result: easy to find any given key



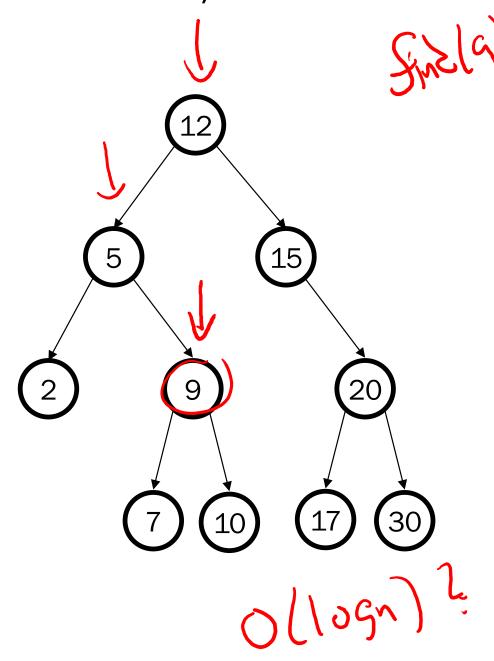
Are these BSTs?



Are these BSTs?



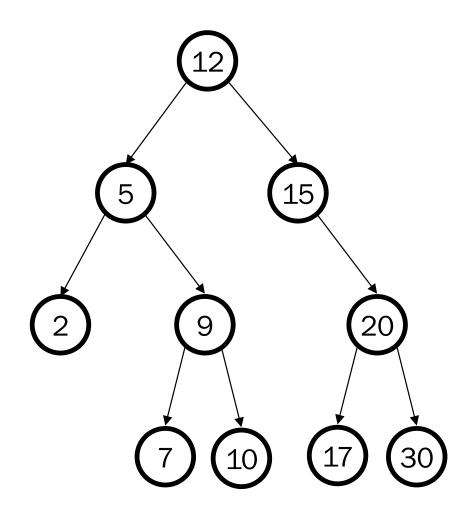
Find in BST, Recursive



```
Data find(Key key, Node root) {
  if(root == null)
    return null;
  if(key < root.key)
    return find(key, root.left);
  if(key > root.key)
    return find(key, root.right);
  return root.data;
}
```

0(h)

Find in BST, Iterative



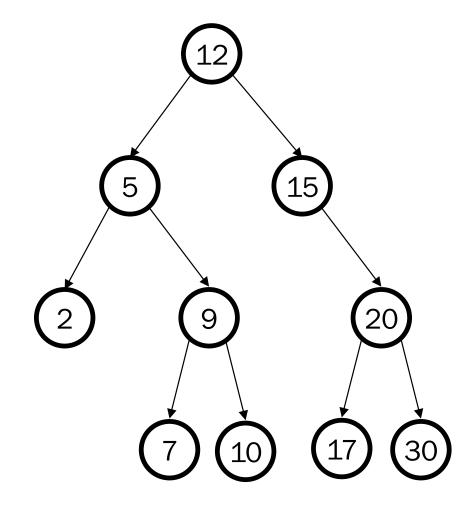
```
Data find(Key key, Node root) {
  while(root != null
        && root.key != key) {
    if(key < root.key)
        root = root.left;
    else(key > root.key)
        root = root.right;
  }
  if(root == null)
    return null;
  return root.data;
}
```

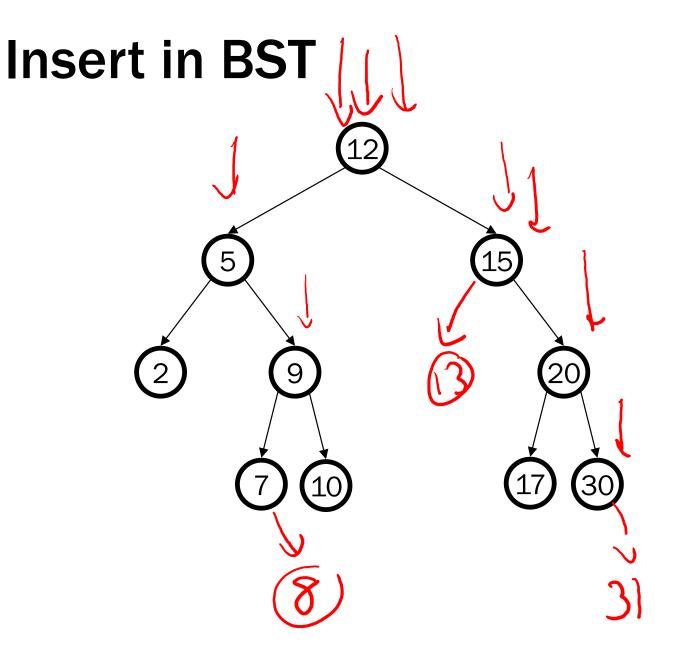
Other "finding operations"

• Find minimum node

• Find maximum node

keep going right



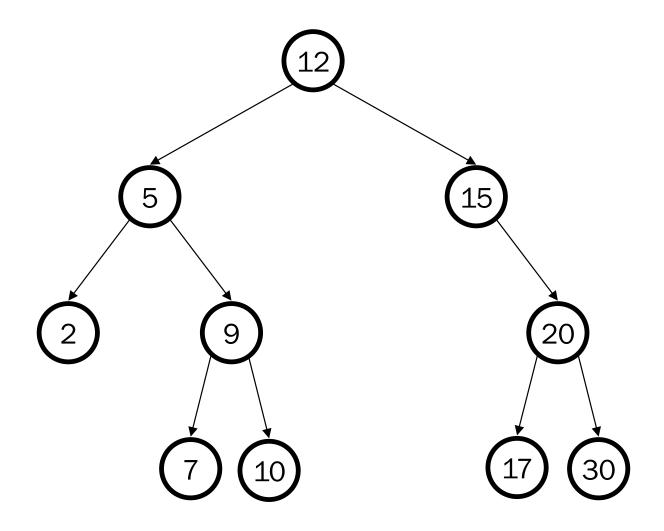


insert(13)
insert(8)
insert(31)

(New) insertions happen only at leaves – easy!

- \rightarrow 1. Find
- 2. Create a new node

Deletion in BST



Why might deletion be harder than insertion?

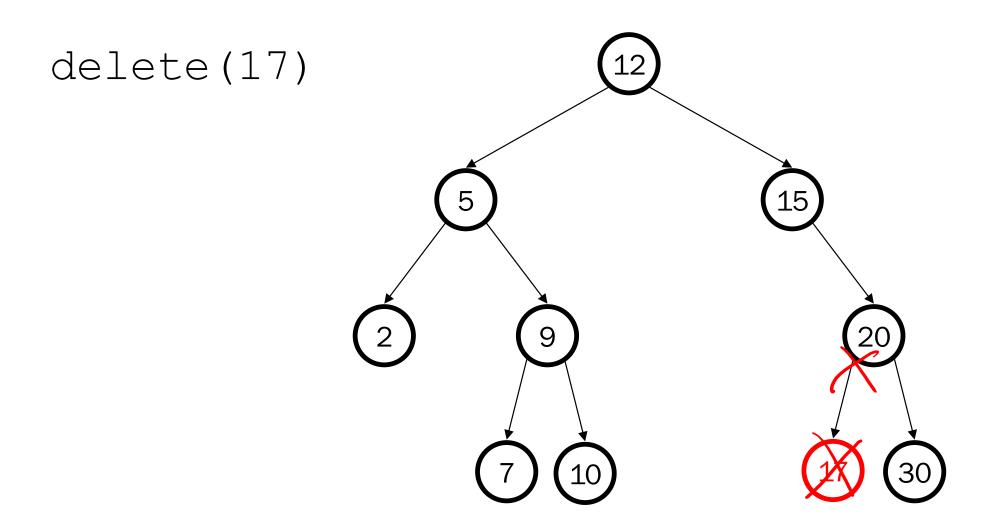
Deletion

Removing an item disrupts the tree structure

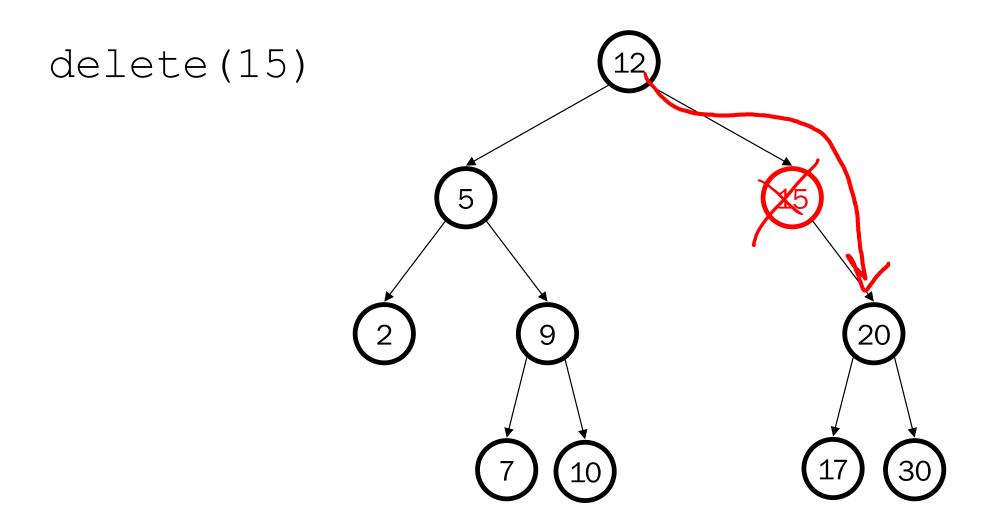
- Basic idea:
 - find the node to be removed,
 - Remove it
 - "fix" the tree so that it is still a binary search tree

- Three cases:
 - node has no children (leaf)
 - node has one child
 - node has two children

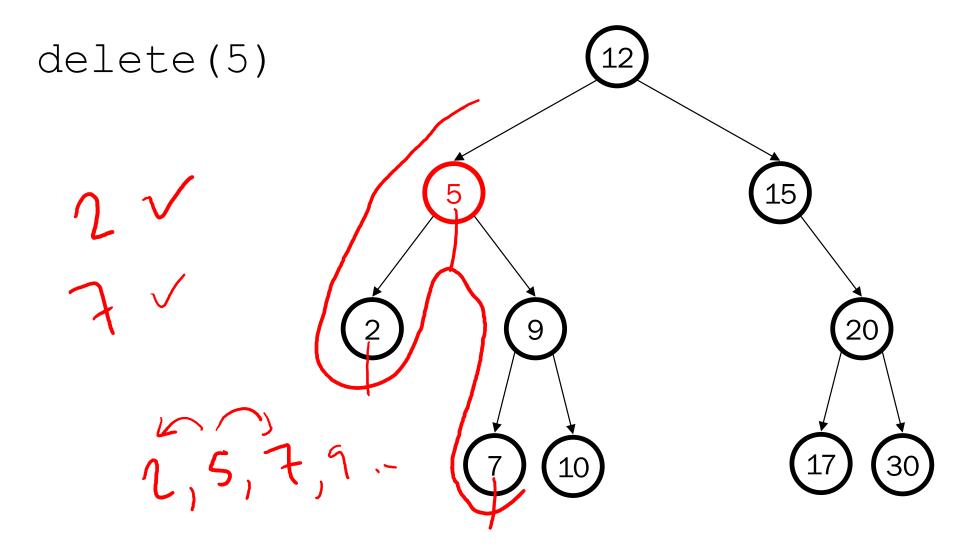
Deletion – The Leaf Case



Deletion - The One Child Case



Deletion - The Two Child Case



What can we replace 5 with?

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

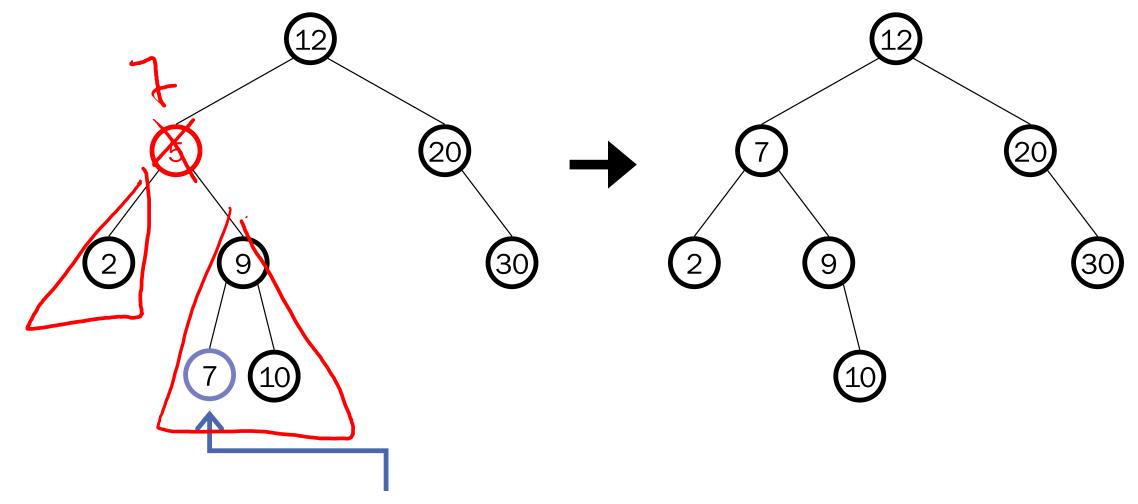
Two Options:

- successor from right subtree: findMin (node.right)
- predecessor from left subtree: findMax (node.left)
 - These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

Leaf or one child case – easy cases of delete!

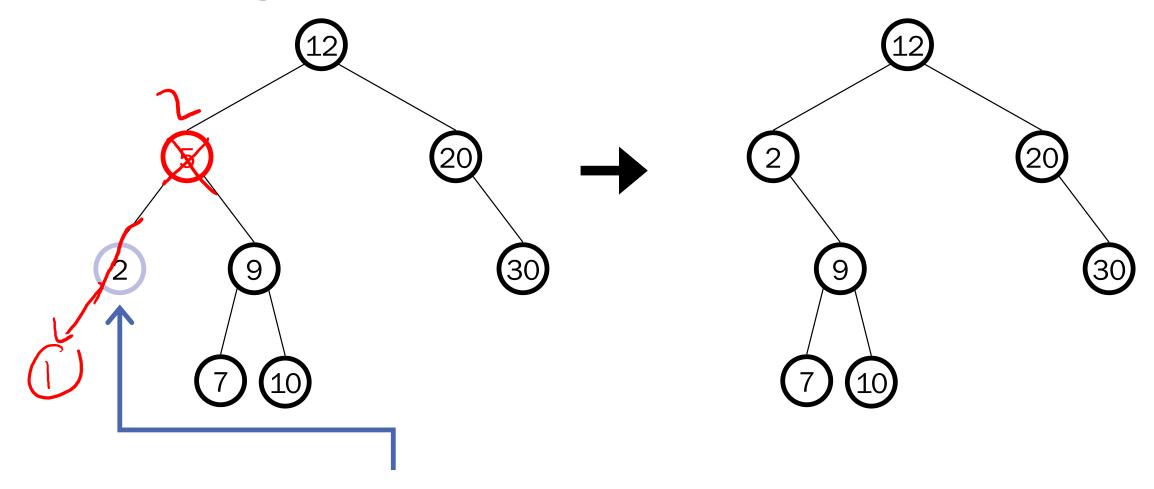
Delete Using Successor



findMin(right sub tree) → 7

delete(5)

Delete Using Predecessor



findMax(left sub tree) → 2

delete(5)

BuildTree for BST

We had buildHeap, so let's consider buildTree

5,3,7,1,1,6,8,9

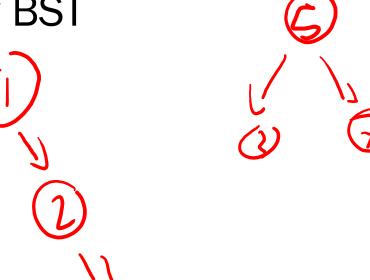
Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

If inserted in given order, what is the tree?

What big-O runtime for this kind of sorted input?

0(1)

Is inserting in the reverse order any better?



BuildTree for BST

We had buildHeap, so let's consider buildTree

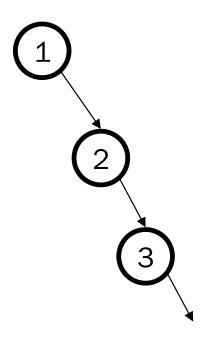
Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

If inserted in given order, what is the tree?

What big-O runtime for this kind of sorted input?

O(n²)
Not a happy place

Is inserting in the reverse order any better?



Balanced BST

Observation

BST: the shallower the better!

For a BST with *n* nodes inserted in arbitrary order

Average height is $O(\log n)$ – see text for proof

Worst case height is O(n)

Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a Balance Condition that

- 1. ensures depth is always $O(\log n)$ strong enough!
- is easy to maintain not too strong!

pollev.com/artliu

1. Left and right subtrees of the <u>root</u> have equal <u>number of nodes</u>

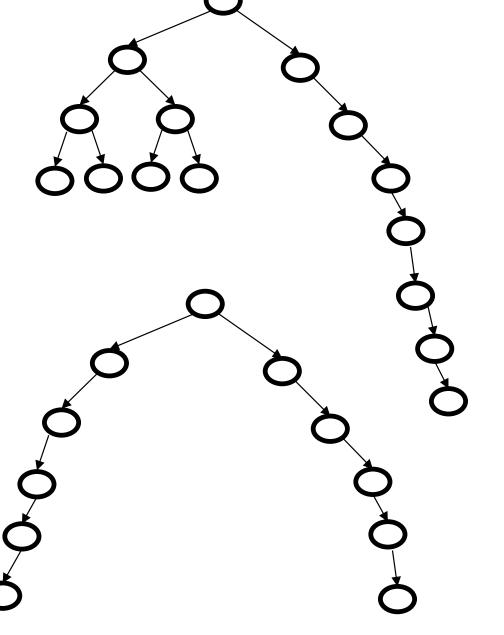
2. Left and right subtrees of the <u>root</u> have equal <u>height</u>

1. Left and right subtrees of the <u>root</u> have equal <u>number of nodes</u>

Too weak!
Height mismatch example:

2. Left and right subtrees of the <u>root</u> have equal <u>height</u>

Too weak!
Double chain example:



3. Left and right subtrees of <u>every node</u> have equal <u>number of nodes</u>

4. Left and right subtrees of <u>every node</u> have equal <u>height</u>

3. Left and right subtrees of <u>every node</u> have equal <u>number of nodes</u>

Too strong!
Only perfect trees (2ⁿ – 1 nodes)

Too strong!
Only perfect trees (2ⁿ – 1 nodes)

