# CSE 332: Data Structures \& Parallelism Lecture 6: Dictionaries; Binary Search Trees 

Arthur Liu<br>Summer 2022

## Announcements

- Fill out partner form by 6pm tonight!
- EVERYONE must fill it out, even if same partner or working by yourself
- You will not receive a repo if you do not fill it out in time
- We will leave feedback on P1 writeup
- Not graded as harshly, but make sure you look at your feedback to use for P2 writeup!
- Exercise 3 and Exercise 4 due Friday


## CS (can be) frustrating

But that is part of being an expert programmer! (And the 3 seconds of feeling awesome after you figure it out)

Expert Programmer duties include:

- Writing expert level bugs
- Removing expert level bugs

Strategies Include:

- Stare and Hope
- "Shotgun" debugging
- Other (SEE COURSE WEBSITE HANDOUT!)



## Today - Dictionaries and BST

- Finish Big-Oh
- Recursion Analysis
- Amortization
- Proofs
- Dictionary \& BST


## Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

ADTs so far:
1.Stack: push, pop, isEmpty, ...
2.Queue:
enqueue, dequeue, isEmpty, ...
3.Priority queue: insert, deleteMin, ...

Next:
4.Dictionary (a.k.a. Map): associate keys with values

- probably the most common, way more than priority queue


## The Dictionary (a.k.a. Map) ADT

| Dictionary ADT |
| :--- |
| State: |
| - Set of unique (key, value) pairs |
| -Keys can be compared for <br> equality <br> Operations: <br> - insert(key val) - places (key,val) <br> in map. <br> (If key already used, overwrites <br> existing entry) <br> - find(key) - returns val associated <br> with key <br> - delete(key) |

## Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values

- A key is present or not (no repeats)

For find, insert, delete, there is little difference

- In dictionary, values are "just along for the ride"
- So same data-structure ideas work for dictionaries and sets
- Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations

- union, intersection, is_subset, etc.
- Notice these are binary operators on sets
- We will want different data structures to implement these operators


## A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and be able to retrieve it efficiently - a dictionary is the ADT to use!

- Lots of programs do that!
- Networks:
- Operating systems:
- Compilers:
- Databases:
- Search:
- Biology:
- ...
router tables
page tables
symbol tables
dictionaries with other nice properties
inverted indexes, phone directories, ...
genome maps


## Simple implementations

For dictionary with $n$ key/value pairs. (No duplicates allowed!)

|  | insert | find | delete |
| :---: | :--- | :--- | :--- |
| Unsorted <br> Linked-List |  |  |  |
| Unsorted Array |  |  |  |
| Sorted Linked- <br> List |  |  |  |
| Sorted Array |  |  |  |

## Simple implementations

For dictionary with $n$ key/value pairs. (No duplicates allowed!)

|  | insert | find | delete |
| :---: | :--- | :--- | :--- |
| Unsorted <br> Linked-List | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}(\mathrm{N})$ |
| Unsorted Array | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}(\mathrm{N})$ |
| Sorted Linked- <br> List | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}(\mathrm{N})$ |
| Sorted Array | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}(\log \mathrm{N})$ | $\mathrm{O}(\mathrm{N})$ |

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

## Lazy Deletion (e.g. in a sorted array)

| $\mathbf{1 0}$ | $\mathbf{1 2}$ | $\mathbf{2 4}$ | $\mathbf{3 0}$ | $\mathbf{4 1}$ | $\mathbf{4 2}$ | $\mathbf{4 4}$ | $\mathbf{4 5}$ | $\mathbf{5 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\checkmark$ | $x$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\times$ | $\checkmark$ | $\checkmark$ |

A general technique for making delete as fast as find:

- Instead of actually removing the item just mark it deleted
- No need to shift values, etc.

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:

- Extra space for the "is-it-deleted" flag
- Data structure full of deleted nodes wastes space
- find $O(\log m)$ time where $m$ is datastructure size ( $\mathrm{m}>=\mathrm{n}$ )
- May complicate other operations


## Better Dictionary data structures

Will spend the next several lectures looking at dictionaries with three different data structures

1. AVL trees

- A special binary search trees with guaranteed balancing

2. B-Trees

- Also always balanced, but different and shallower
- B!=Binary; B-Trees generally have large branching factor

3. Hashtables

- Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

## Why Trees?

Trees offer speed ups because of their branching factors

- Binary Search Trees are structured forms of binary search

Binary Search
find(4)


## Binary Search Tree

Our goal is the performance of binary search in a tree representation


## Why Trees?

Trees offer speed ups because of their branching factors

- Binary Search Trees are structured forms of binary search

Even a basic BST is fairly good

|  | Insert | Find | Delete |
| :--- | :---: | :---: | :---: |
| Worse-Case | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ |
| Average-Case | $\mathrm{O}(\log \mathrm{n})$ | $\mathrm{O}(\log \mathrm{n})$ | $\mathrm{O}(\log \mathrm{n})$ |

## Binary Trees

- Binary tree is either
- Empty (ie: null)
- a root (with left and right subtrees)
- Representation:

| Data |  |
| :---: | :---: |
| left <br> pointer | right <br> pointer |

For a dictionary, data will include a key and a value


## Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height $h$ :

- max \# of leaves:
- max \# of nodes:
- min \# of leaves:
- min \# of nodes:


## Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height $h$ :

- max \# of leaves: $\quad 2^{h}$
- max \# of nodes: $\quad 2^{(h+1)}-1$
- min \# of leaves: 1
- min \# of nodes: $\quad h+1$

For $n$ nodes, we cannot do better than $O(\log n)$ height, and we want to avoid $O(n)$ height

## Calculating height

What is the height of a tree with root $r$ ?

```
int treeHeight(Node root) {
```

???
\}
Running time for tree with $n$ nodes: $O(n)$ - single pass over tree
Note: non-recursive is painful - need your own stack of pending nodes; much easier to use recursion's call stack

## Calculating height

What is the height of a tree with root $r$ ?

```
int treeHeight(Node root) {
    if(root == null)
        return -1;
    return 1 + max(treeHeight(root.left),
                        treeHeight(root.right));
```

\}

Running time for tree with $n$ nodes: $O(n)$ - single pass over tree
Note: non-recursive is painful - need your own stack of pending nodes; much easier to use recursion's call stack

## Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- Pre-order: root, left subtree, right subtree
- In-order: left subtree, root, right subtree
- Post-order: left subtree, right subtree, root

(an expression tree)


## Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- Pre-order: root, left subtree, right subtree

$$
+ \text { * } 245
$$

- In-order: left subtree, root, right subtree 2 * $4+5$
- Post-order: left subtree, right subtree, root

$$
24 \text { * } 5+
$$



## More on traversals

```
void inOrdertraversal(Node t) {
    if(t != null) {
        traverse(t.left);
        process(t.element);
        traverse(t.right);
    }
}
```

The difference between the 3 traversals is when process() gets called Sometimes order doesn't matter

- Example: sum all elements


A B

D
Sometimes order matters
E

- Example: print tree with parent above indented children (pre-order)
- Example: evaluate an expression tree (post-order)

C

## Dictionary data structure: Binary Search Tree

Defined by these properties:

- Structural property ("binary")
- each node has $\leq 2$ children
- result: keeps operations simple
- Order property
- all keys in left subtree smaller than node's key
- all keys in right subtree larger than node's key
- result: easy to find any given key



## Are these BSTs?



## Are these BSTs?



Find in BST, Recursive


```
Data find(Key key, Node root){
    if(root == null)
        return null;
    if(key < root.key)
        return find(key,root.left);
    if(key > root.key)
        return find(key,root.right);
    return root.data;
}
```

Find in BST, Iterative


## Other "finding operations"

- Find minimum node
- Find maximum node



## Insert in BST



```
insert(13)
insert (8)
insert(31)
```

(New) insertions happen only at leaves - easy!

1. Find
2. Create a new node

## Deletion in BST



Why might deletion be harder than insertion?

## Deletion

- Removing an item disrupts the tree structure
- Basic idea:
- find the node to be removed,
- Remove it
- "fix" the tree so that it is still a binary search tree
- Three cases:
- node has no children (leaf)
- node has one child
- node has two children


## Deletion - The Leaf Case

 delete (17)

## Deletion - The One Child Case



## Deletion - The Two Child Case



What can we replace 5 with?

## Deletion - The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Two Options:

- successor from right subtree: findMin (node.right)
- predecessor from left subtree: findMax (node.left)
- These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

- Leaf or one child case - easy cases of delete!


## Delete Using Successor



## Delete Using Predecessor



## BuildTree for BST

We had buildHeap, so let's consider buildTree

Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
If inserted in given order, what is the tree?

What big-O runtime for this kind of sorted input?

Is inserting in the reverse order any better?

## BuildTree for BST

We had buildHeap, so let's consider buildTree

Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST If inserted in given order, what is the tree?

What big-O runtime for this kind of sorted input?
$O\left(n^{2}\right)$
Not a happy place

Is inserting in the reverse order


## Balanced BST

Observation
BST: the shallower the better!
For a BST with $n$ nodes inserted in arbitrary order
Average height is $O(\log n)$ - see text for proof
Worst case height is $O(n)$
Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a Balance Condition that

1. ensures depth is always $O(\log n)$ - strong enough!
2. is easy to maintain

- not too strong!


## Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes
2. Left and right subtrees of the root have equal height

## Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes
```
Too weak!
```

Height mismatch example:


## Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes
4. Left and right subtrees of every node have equal height

## Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes
```
    Too strong!
Only perfect trees (2n - 1 nodes)
```


4. Left and right subtrees of every node have equal height

Too strong!
Only perfect trees ( $2^{n}-1$ nodes)

## The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: balance(node) = height(node.left) - height(node.right)
AVL property: for every node $x,-1 \leq$ balance $(x) \leq 1$

- Ensures small depth
- Will prove this by showing that an AVL tree of height $h$ must have a number of nodes exponential in $h$
- Easy (well, efficient) to maintain
- Using single and double rotations

