Array Representation of a Binary Heap

From node i:
left child: $2 i$
right child: $2 i+1$
parent: Slor (i/L)

	A	B	C	D	E	F	G	H	I	J	K	L	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

- We skip index 0 to make the math simpler
- Actually, it can be a good place to store the current size of the heap

Array Representation of a Binary Heap

From node i:

left child:	$\frac{2 i}{2 i+1}$
right child:	
parent:	

	A	B	C	D	E	F	G	H	I	J	K	L	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

- We skip index 0 to make the math simpler
- Actually, it can be a good place to store the current size of the heap

Note: Exercises and P2 start counting from 0

Pseudocode: insert

```
```

void insert(int val) {

```
```

void insert(int val) {
if(size==arr.length-1)
if(size==arr.length-1)
resize();
resize();
size++;
size++;
i=percolateUp(size,val);
i=percolateUp(size,val);
arr[i] = val;
arr[i] = val;
}

```
```

}

```
```

This pseudocode uses ints. In real use, you will have data nodes with priorities.
int percolateUp(int hole, int val) \{ while (hole > 1 \&\&
val < arr[hole/2]) \{ arr[hole] = arr[hole/2]; hole = hole / 2;
\}
return hole;
\}

Note: Exercises and P2 start counting from 0

Pseudocode: deleteMin

This pseudocode uses ints. In real use, you will have data nodes with priorities.

```
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown
            (1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
int percolateDown(int hole,
    int val) {
    while(2*hole <= size) {
    left = 2*hole;
    right = left + 1;
    if(arr[left] < arr[right]
            || right > size)
            target = left;
        else
            target = right;
    if(arr[target] < val) {
\}
\}
            arr[hole] = arr[target];
            arr[hole] = arr[target];
            hole = target;
            hole = target;
        \} else
        \} else
        break;
        break;
    \}
    \}
    return hole;
    return hole;
\}
```

\}

```

\section*{(11) Poll Everywhere}

Note: Exercises and P2 start counting from 0

\section*{Example}
1. insert: 16, 32, 4, 57, 80, 43, 2 3. What oc the 2 prupetion
2. deleteMin


Example
1. insert: \(16,32,4,57,86,4 \not 2,2\)
2. deleteMin


Note: Exercises and P2 start counting from 0

\section*{Example: After insertion}
1. insert: \(16,32,4,57,80,43,2\)
2. deleteMin


Note: Exercises and P2 start counting from 0

\section*{Example: After deletion}
1. insert: \(16,32,4,57,80,43,2\)
2. deleteMin
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathbf{4}\) & \(\mathbf{3 2}\) & \(\mathbf{1 6}\) & \(\mathbf{5 7}\) & \(\mathbf{8 0}\) & \(\mathbf{4 3}\) & \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{tabular}


\section*{So why \(0(1)\) average-case insert?}
- Yes, insert's worst case is \(\mathrm{O}(\log \mathrm{n})\)

- The trick is that it all depends on the order the items are inserted (What is the worst case order?) reverie \(5,4,3,2,1\)
- Experimental studies of randomly ordered inputs shows the following:
- Average 2.607 comparisons per insert (\# of percolation passes)
- An element usually moves up 1.607 levels

- deleteMin is average \(O(\log n)\)
- Moving a leaf to the root usually requires re-percolating that value back to the bottom

\section*{Evaluating the Array Implementation...}

\section*{Advantages:}

Minimal amount of wasted space:
- Only index 0 and any unused space on right in the array
- No "holes" due to complete tree property
- No wasted space representing tree edges

Fast lookups:
- Benefit of array lookup speed
- Multiplying and dividing by 2 is extremely fast (can be done through bit shifting (see CSE 351)
\& Last used position is easily found by using the PQueue's size for the index

Disdvantages:
- What if the array gets too full (or wastes space by being too empty)? Array will have to be resized.

Advantages outweigh Disadvantages: This is how it is done!


\section*{Other (specialized) operations}
- decreaseKey: given pointer to object in priority queue (e.g., its array index), lower its priority value by \(p\)
- Change priority and percolate up
```

o(losin)

```
- increaseKey: given pointer to object in priority queue (e.g., its array index), raise its priority value by \(p\)
- Change priority and percolate down
\[
o(\log n)
\]
remove: given pointer to object in priority queue (e.g., its array index), remove it from the queue
- decreaseKey with \(p=\infty\), then deleteMin o(losn) \(+\) \(O(\log n)\)
Running time for all these operations?


\section*{Building a Heap}

Suppose you have \(n\) items you want to put in a new priority queue
- A sequence of \(n\) insert operations works
-Runtime? \(\cap \cdot O(\log 1)=o(n \log n))\)
Can we do better?
- If we only have access to insert and deleteMin operations, then NO.
- There is a faster way \(-O(n)\), but that requires the ADT to have a specialized buildHeap operation

\section*{Floyd's buildHeap Method}

Recall our general strategy for working with the heap:
\(\rightarrow\) Preserve structure property
\(\rightarrow\) Break and restore heap ordering property

Floyd's buildHeap:
1. Create a complete tree by putting the n items in array indices 1, . ... N
(Requires having all the elements that we want to insert all at once!)
2. Treat the array as a heap and fix the heap-order property

Exactly how we do this is where we gain efficiency

\section*{Thinking about buildHeap}
- Say we start with this array:
[12,5,11,3,10,2,9,4,8,1,7,6]
- To "fix" the ordering should we use:
\(\rightarrow\) • percolateUp?
* percolateDown?


\section*{Floyd's buildHeap Method}
percolateDown, bottom-up:
- Leaves are already in heap order
- Work up toward the root one level at a time
```

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;
}
}

```

\section*{buildHeap Example}
- Say we start with this array:
[12,5,11,3,10,2,9,4,8,1,7,6]
- In tree form for readability
- Red for node not less than descendants
- heap-order problem
- Notice no leaves are red
- Check/fix each non-leaf bottom-up (6 steps here)


\section*{buildHeap Example}

- Happens to already be less than child

\section*{buildHeap Example}

- Percolate down (notice that moves 1 up)

\section*{buildHeap Example}

- Another nothing-to-do step

\section*{buildHeap Example}

- Percolate down as necessary (steps 4a and 4b)

\section*{buildHeap Example}


\section*{buildHeap Example}


\section*{But is it right?}
- "Seems to work"
- Let's prove it restores the heap property (correctness)
- Then let's prove its running time (efficiency)
```

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;
}
}

```

\section*{Correctness}
```

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;
}
}

```

Loop Invariant: For all \(\mathbf{j}>\mathbf{i}, \operatorname{arr}[\mathbf{j}]\) is less than its children
- True initially: If \(j>\) size/2, then \(j\) is a leaf
- Otherwise its left child would be at position > size
- True after one more iteration: loop body and percolateDown make \(\operatorname{arr}\) [i] less than children without breaking the property for any descendants
So after the loop finishes, all nodes are less than their children

\section*{Loop Invariant:}

For all \(j>i\), arr \([j]\) is less than its children
- True initially:

If \(j>\) size/2, then \(j\) is a leaf
- True after one more iteration:
loop body and percolateDown make arr [i] less than children without breaking the property for any descendants
So after the loop finishes,
all nodes are less than their children
```

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;
}
}

```

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathbf{4 0}\) & \(\mathbf{2 0}\) & \(\mathbf{8 0}\) & \(\mathbf{3 0}\) & \(\mathbf{6 1}\) & \(\mathbf{5}\) & \(\mathbf{9}\) & \(\mathbf{7 0 0}\) & \(\mathbf{5 0}\) & \(\mathbf{6 0}\) & & & \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13
\end{tabular}

\section*{Efficiency}
void buildHeap() \{
    for (i = size/2; i>0; i--) \{
        val = arr[i];
        hole \(=\) percolateDown(i,val);
        arr[hole] = val;
\}

Easy argument: buildHeap is \(O(n \log n)\) where \(n\) is size
- size/2 loop iterations
- Each iteration does one percolateDown, each is \(O(\log n)\)

This is correct, but there is a more precise ("tighter") analysis of the algorithm...

Efficiency

```

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;
}
}

```

Better argument: buildHeap is \(O(n)\) where \(n\) is size
\[
\begin{aligned}
& \frac{n}{2}\left[\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2+\frac{1}{8} 3 \cdot \cdot \frac{1}{2^{k}} \cdot k\right. \\
= & \frac{n}{2} \sum_{i=1}^{k} \frac{i}{i}<\frac{n}{2} \sum_{i=1}^{i=1} \frac{i}{2^{i}}=\frac{n}{2} \cdot \imath=0(n)
\end{aligned}
\]

\section*{Efficiency}
```

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;
}
}

```

Better argument: buildHeap is \(O(n)\) where \(n\) is size
- size/2 total loop iterations: \(O(n)\)
- \(1 / 2\) the loop iterations percolate at most 1 step
- \(1 / 4\) the loop iterations percolate at most 2 steps
- \(1 / 8\) the loop iterations percolate at most 3 steps... etc.
\(\cdot((1 / 2)+(2 / 4)+(3 / 8)+(4 / 16)+(5 / 32)+\ldots)=2\) (page 4 of Weiss)
- So at most 2 (size/2) total percolate steps: \(O(n)\)
- Also see Weiss 6.3.4, sum of heights of nodes in a perfect tree

\section*{Lessons from buildHeap}
- Without buildHeap, our ADT already let clients implement their own in \(\theta(n \log n)\) worst case
- Worst case is inserting lower priority values later
- By providing a specialized operation internally (with access to the data structure), we can do \(O(n)\) worst case
- Intuition: Most data is near a leaf, so better to percolate down
- Can analyze this algorithm for:
- Correctness: Non-trivial inductive proof using loop invariant
- Efficiency:
- First analysis easily proved it was \(O(n \log n)\)
- A "tighter" analysis shows same algorithm is \(O(n)\)

\section*{More heaps (see Weiss if curious)}
- d-heaps: have \(d\) children instead of 2 (Weiss 6.5)
- Makes heaps shallower, useful for heaps too big for memory
- How does this affect the asymptotic run-time (for small d's)?
- Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)
- Different data structures for priority queues that support a logarithmic time merge operation (impossible with binary heaps)
- merge : given two priority queues, make one priority queue
- Insert \& deleteMin defined in terms of merge

Aside: How might you merge binary heaps:
- If one heap is much smaller than the other?
- If both are about the same size?```

