CSE 332: Data Structures & Parallelism
Lecture 4: Priority Queues and Heaps

Arthur Liu
Summer 2022

6/29/2022 1

Announcements

* Checkpoint 1 due last night
* EXO2 due Friday

Today - Priority Queues and Heaps

—

* Priority Queue ADT
* Binary Min-Heap Datastructure

* (More recurrences on Friday)

Scenario

What is the difference between waiting for service at a pharmacy
versus an ER?

Pharmacies usually follow the rule >
First Come, First Served Queue S;X(, O

Emergency Rooms assign priorities Priority
based on each individual's need Queue

6/29/2022

Priority Queue ADT
Y

Priority Queue ADT

State:
» Set of comparable elements
T S e——————
* Order based on “priority”

Operations:

* insert(element)

P2 deleteMin() - returns the
element with the smallest
priority, removes it from the
collection

e findMin()

6/29/2022

~1.

nsert, deleteMin,

* Assume each item has a “priority”

* The lesser item is the one with the
greater priority

* So “priority 1”7 is more important than
“priority 4”

* Just a convention, could also do a
maximum priority

Aside: We will use ints as data and priority

For simplicity in lecture, we’ll often suppose items are just ints and
the int is also the priority

» SO an operation sequence could be
insert 6
insert 5
X = deleteMin // Now x = 5.
—int priorities are common, but really just need comparable

* Not having “other data” is very rare
* Example: print job has a priority and the file to print is the data

Applications

Like all good ADTs, the priority queue arises often
* Sometimes “directly”, sometimes less obvious

* Run multiple programs in the operating system
» “critical” before “interactive” before “compute-intensive”
* Maybe let users set priority level

* Treat hospital patients in order of severity (or triage
pital pa . y (ge) - g}m@\@w)
 Select print jobs in order of decreasing length? \/\\A
* Forward network packets in order of urgency j
» Select most frequent symbols for data compression (peep CSE143)

* Sort: insert all, then repeatedly deleteMin —) L\mp Joct

6/29/2022 7

More applications

* “Greedy” algorithms
» Select the ‘best-looking’ choice at the moment
* Will see an example when we study graphs in a few weeks

* Discrete event simulation (system modeling, virtual worlds, ...)
« Simulate how state changes when events fire

* Each event e happens at some time t and generates new events e1, ..., en at
times t+t1, ..., t+tn

* Nailve approach: advance “clock” by 1 unit at a time and process any events that
happen then
* Better:
* Pending events in a priority queue (priority = time happens)
* Repeatedly: deleteMin and then insert new events
» Effectively, “set clock ahead to next event”

Preliminary Implementations of Priority Queue ADT
insert Oél\))¢

XL

y deleteMin
UI%&Y \r\%‘lz\ ;‘k o) o)
Unsorted Linked-List) U~ ol N)
Sorted Circular Atray | \;’(fj 5 0W) L))
Sorted Linked-List . oW ,. Ol |)
Binary Search Tree (BST) @%) o(N) 5 e o(N)
[

6/29/2022

Notes: Worst case, Ass\)@e arrays have enoughrgpace

Need a good data structure!

* Next we will show an efficient, non-obvious data structure for this ADT
* But first let’s analyze some “obvious” ideas for n data items
* All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time
unsorted array add at end O(1) search O(n)
unsorted linked list add at front O(1) search O(n)
sorted circular array search / shift O(n) move front O(1)

))

sorted linked list put in right place O(n remove at front O(1

binary search tree put in right place O(n) leftmost O(n)

Aside: More on possibilities o/qo
G 4
* Note: If priorities are inserted in random order, binary search
tree will likely do better than O(n)

* O(log n) insert and O(log n) deleteMin on average

* Could get same performance from a balanced binary search tree
(e.g. AVL tree we will study later)

* One more idea: if priorities are O, 1, ..., k can use array of lists
* insert: add to front of list at arr [priority], O(1)
 deleteMin: remove from lowest non-empty list O(k)

Our Data Structure: The Heap

The Heap:
» Worst case: O(log n) for insert

N—

* If items arrive in random order, then the average-case of (insertjis O(1) !
» Worst case: O(log n) for deleteMin

* Very good constant factors

Key idea: Only pay for functionality needed
* We need something better than scanning unsorted items
* But we do not need to maintain a full sorted list

* Do “log”s remind you of anything? A A We will visualize our heap as a tree

6/29/2022 12

Q: Reviewing Some Tree Terminology
root(T):

leaves(T): D-¢, T 7~ V)
children(B): D 4,%
parent(H):

siblings(E):

ancestors(F):
descendents(G):
subtree(QG):

6/29/2022 13

A: Reviewing Some Tree Terminology

root(T):
leaves(T):
children(B):
parent(H):
siblings(E):
ancestors(F):

descendents(G):

subtree(QG):

6/29/2022

A

D-F, 1, J-N
D,E, F

G

D, F

B, A

H, I, J-N
G and its
children

§>“>>

Tree T

¥

OO ©

(D O
GO‘@@

14

% Q: Some More Tree Terminology %S o ecops

Tree T

depth(B): L
height(G): L
height(T): 4

degree(B): "3 é@sﬂ(lﬂ: S

branching factor(T): o -§

Segh(H):
her gl (’_[3 . 0

6/29/2022

15

A: Some More Tree Terminology
depth(B): 1 free T
height(G): 2

height(T): 4 @
degree(B): 3
000,

branching factor(T): 0-5

6/29/2022 16

Types of Trees oy ™~

Binary tree: Every node has <2 children
n-ary tree: Every node has <n children
I —— — s
Perfect tree: Every row is completely full
Complete tree: All rows except possibly the bottom are

completely full, and it is filled from left to

Perfect Tree Complete Tree

6/29/2022 17

More on Perfect Trees Op\O

Perfect tree: Every row is completely full

O

00 6b S9Vvbo
Perfect Tree
PrLbrd g7
h [A ¥
1 =1 -1

(Co

6/29/2022

2 3 lepen

(_D:°Q—E‘Q -

18

More on Perfect Trees

Perfect tree: Every row is completely full

N

Perfect Tree

6/29/2022

height # of nodes # of leaves
0 1 1
1 3 2
2 7 4
3 15 8
h 2h+1 1 2h

19

Some Basic Tree Properties

Nodes in a perfect binary tree of height h? fLM)f \ 7 N
2h+1_1 — l,‘l\
Leaf nodes in a perfect binary tree of height h? 1 2 ntl
2! | o W) 7 Les(ah)
Height of a perfect binary tree with n nodes? L1 2 |07(’\“)
[logz n W2 logCan) ™)

Height of a complete binary tree with n nodes?)
[log; n] h Z ceil (losth

6/29/2022 20

Now Formalizing: Binary Min-Heap Datastructure

More commonly known as a binary heap or simply a heap
 Structure Property:
A complete [binary] tree

* Heap-Order Property:
Every non-root node has a priority value larger than (or possibly
equal to) the priority of its parent

6/29/2022

21

Now Formalizing: Binary Min-Heap Datastructure

More commonly known as a binary heap or simply a heap
 Structure Property:

A complete [binary] tree

* Heap-Order Property:
Every non-root node has a priority value larger than (or possibly
equal to) the priority of its parent

6/29/2022 22

Properties of Binary Min-Heap

* Where is the minimum priority item?

* What is the height of a heap with n items?

OU og(r\))

2

20 B
G @@ GO
(700) (50)

6/29/2022

(85)

23

@ Poll Everywhere pollev.com/artliu

Are these valid binary heaps?

6/29/2022 on

Implementing Priority Queue ADT

State: insert
» Set of comparable elements -
* Order based on “priority”

Operations:

* insert(element)

* deleteMin() - returns the
element with the smallest
priority, removes it from the
collection

* findMin()

deleteMin,

6/29/2022

Heap Operations

* insert(val): percolate up

6/29/2022

26

Heap Operations
e findMin: vedom wsot

» deleteMin: percolate down

6/29/2022

27

Operations: basic idea

e findMin:
return root.data (102
» deleteMin: (20) (80)
1. answer = root.data (99) (85)
2. Move right-most node in last row to

root to restore structure property

3. “Percolate down” to restore heap
order property

* insert:

1. Put new node in next position on
bottom row to restore structure

Overall strategy:

* Preserve complete tree
structure property

property e This m?y break heap order
2. “Percolate up” to restore heap property
order property * Percolate to restore heap
order property

6/29/2022 28

DeleteMin Implementation

1.

Delete value at root node (and store it for
later return)

There is now a "hole" at the root. We must
"fill" the hole with another value, must have
a tree with one less node, and it must still
be a complete tree

The "last" node is the obvious choice, but
now the heap order property is violated

We percolate down to fix the heap order:
While greater than either child
Swap with smaller child

6/29/2022

29

Percolate Down

Percolate down:

» Keep comparing with both children

* Move smaller child up and go down one level

* Done if both children are > item or reached a leaf node
» Why does this work? What is the run time?

DeleteMin: Run Time Analysis

* Run time is O(height of heap)
* A heap is a complete binary tree

* Height of a complete binary tree of n nodes?
height = 1ogs(n) |

* Run time of deleteMin is O(1log n)

Insert

 Add a value to the tree

 Structure and heap order
properties must still be
correct afterwards

Insert: Maintain the Structure Property

* There is only one valid tree
shape after we add one more
node!

* So put our new data there and
then focus on restoring the
heap order property

Insert: Maintain the Heap Order property

Percolate up:
* Put new data in new location

« If parent larger, swap with parent, and continue
* Done if parent < item or reached root
« Why does this work? What is the run time?

Clever trick for storing the heap...

Need to have access to “next to use”
position in the tree. Requires at
minimum log(n)...

How could we get O(1) average-case
insertion?

Hint: why did we insist the tree be
complete?
* All complete trees have the same

edges, so we don’t need to explicitly
represent edges

Note: Exercises and P2 start counting from O

Array Representation of a Binary Heap

From node i:
left child: 7 |
right child:). T +)

parent: 310_; (i /1_\

A B | C | D E F | G H I J K L
o) 1 2 3 4 5 6 7 8 9 10 11 12 13

* We skip index O to make the math simpler

 Actually, it can be a good place to store the current size of
the heap

6/29/2022

Note: Exercises and P2 start counting from O

Array Representation of a Binary Heap

From node i:

left child: 2i

right child: 2i+1
parent: floor(i / 2)

A B | C | D E F | G H I J K L
o) 1 2 3 4 5 6 7 8 9 10 11 12 13

* We skip index O to make the math simpler

 Actually, it can be a good place to store the current size of
the heap

6/29/2022

Note: Exercises and P2 start counting from O

Pseudocode: insert

void insert (int wval) {
if (size==arr.length-1)
resize () ;

This pseudocode uses ints. In real use, you
will have data nodes with priorities.

int percolateUp(int hole,
int wval) {
while (hole > 1 &é&
val < arr[hole/2]) {

size++; arr[hole] = arf[hole/2];
i=B?£SElEE§EP(size,val); hole = hole / 2;
i =] 1l; }
} arrii] ve return hole;
}
10 | 20 | 80 | 40 | 60 | 85 | 99 [700 | 50

6/29/2022

39

Note: Exercises and P2 start counting from O

Pseudocode: deleteMin

int deleteMin() {

if (isEmpty()) throw..

ans = arr|[l];

hole = percolateDown
(1,arr[size]);

arr[hole] = arr[size];

size--;

return ans;

This pseudocode uses ints. In real use, you
will have data nodes with priorities.

int percolateDown (int hole,
int val) {
while (2*hole <= size) {
left = 2*hole;
right = left + 1;
if (arr[left] < arr[right]
| | right > size)

target = left;
else
target = right;

} if (arr[target] < val) {
arr[hole] = arr[target];
hole = target;

} else
break;
}
return hole;
}
10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

6/29/2022

40

