CSE 332: Data Structures \& Parallelism Lecture 4: Priority Queues and Heaps

Arthur Liu
Summer 2022

Announcements

- Checkpoint 1 due last night
- EX02 due Friday

Today - Priority Queues and Heaps

- Priority Queue ADT
- Binary Min-Heap Datastructure
- (More recurrences on Friday)

Scenario

What is the difference between waiting for service at a pharmacy versus an ER?

Pharmacies usually follow the rule First Come, First Served

Queue FIFO
$\begin{array}{ll}\text { Emergency Rooms assign priorities } & \text { Priority } \\ \text { based on each individual's need } & \text { Queue }\end{array}$

Priority Queue ADT

Priority Queue ADT
State:
- Set of comparable elements
• Order based on "priority"
Operations:
- insert(element)
deleteMin() - returns the
element with the smallest
priority, removes it from the
collection
- findMin()

- Assume each item has a "priority"
- The lesser item is the one with the greater priority
- So "priority 1 " is more important than "priority 4"
- Just a convention, could also do a maximum priority

Aside: We will use ints as data and priority

For simplicity in lecture, we'll often suppose items are just ints and the int is also the priority

- So an operation sequence could be
insert 6
insert 5
$\mathbf{x}=$ deleteMin // Now $\mathbf{x}=5$.
-int priorities are common, but really just need comparable
- Not having "other data" is very rare
- Example: print job has a priority and the file to print is the data

Applications

Like all good ADTs, the priority queue arises often

- Sometimes "directly", sometimes less obvious
- Run multiple programs in the operating system
- "critical" before "interactive" before "compute-intensive"
- Maybe let users set priority level
- Treat hospital patients in order of severity (or triage)
- Select print jobs in order of decreasing length?
- Forward network packets in order of urgency
- Select most frequent symbols for data compression (peep CSE143)
- Sort: insert all, then repeatedly deleteMin \rightarrow heapjoct

More applications

- "Greedy" algorithms
- Select the 'best-looking' choice at the moment
- Will see an example when we study graphs in a few weeks
- Discrete event simulation (system modeling, virtual worlds, ...)
- Simulate how state changes when events fire
- Each event e happens at some time t and generates new events e1, ..., en at times $t+t 1, \ldots, t+t n$
- Naïve approach: advance "clock" by 1 unit at a time and process any events that happen then
- Better:
- Pending events in a priority queue (priority = time happens)
- Repeatedly: deleteMin and then insert new events
- Effectively, "set clock ahead to next event"

Preliminary Implementations of Priority Queue ADT

Need a good data structure!

- Next we will show an efficient, non-obvious data structure for this ADT
- But first let's analyze some "obvious" ideas for n data items
- All times worst-case; assume arrays "have room"

data	insert algorithm / time	deleteMin algorithm / time		
unsorted array	add at end	$O(1)$	search	$O(n)$
unsorted linked list	add at front	$O(1)$	search	$O(n)$
sorted circular array	search / shift	$O(n)$	move front	$O(1)$
sorted linked list	put in right place $O(n)$	remove at front $O(1)$		
binary search tree	put in right place $O(n)$	leftmost	$O(n)$	

Aside: More on possibilities

- Note: If priorities are inserted in random order, binary search tree will likely do better than $O(n)$
- $O(\log n)$ insert and $O(\log n)$ deleteMin on average
- Could get same performance from a balanced binary search tree (e.g. AVL tree we will study later)
- One more idea: if priorities are $0,1, \ldots, k$ can use array of lists
- insert: add to front of list at arr [priority], O(1)
- deleteMin: remove from lowest non-empty list $O(k)$

Our Data Structure: The Heap

The Heap:

- Worst case: O(log n) for insert
- If items arrive in random order, then the average-case of insert) is $O(1)$!!
- Worst case: O(log n) for deleteMin
- Very good constant factors

Key idea: Only pay for functionality needed

- We need something better than scanning unsorted items
- But we do not need to maintain a full sorted list
- Do "log"s remind you of anything? We will visualize our heap as a tree

Q: Reviewing Some Tree Terminology

```
root(T):
leaves(T): D-F,F,{-N
children(B): D,F,F
parent(H):
siblings(E):
ancestors(F):
descendents(G):
subtree(G):
T
```


A: Reviewing Some Tree Terminology

root(T):	A
leaves(T):	D-F, I, J-N
children(B):	D, E, F
parent(H):	G
siblings(E):	D, F
ancestors(F):	B, A
descendents(G):	H, I, J-N
subtree(G):	G and its children

$\nLeftarrow \mathrm{Q}$: Some More Tree Terminology
depth(B): 1
height(G): 2
height(T): 4
degree(B): $3 \quad$ desree $(U)=5$
branching factor (T) : $0-5$
\& of edges

A: Some More Tree Terminology

depth $(\mathrm{B}):$	1
height $(\mathrm{G}):$	2
height $(\mathrm{T}):$	4
degree $(\mathrm{B}):$	3
branching factor(T):	$0-5$

Types of Trees

Binary tree:
n-ary tree:
Perfect tree:
Complete tree:

Every node has ≤ 2 children

Every node has $\leq n$ children

Every row is completely full

All rows except possibly the bottom are completely full, and it is filled from left to right

Perfect Tree

Complete Tree

More on Perfect Trees
Perfect tree: Every row is completely full

$$
\sum_{i=0}^{n} i^{i}=2^{n+1}-1
$$

More on Perfect Trees

Perfect tree: Every row is completely full

Perfect Tree

height	\# of nodes	\# of leaves
0	1	1
1	3	2
2	7	4
3	15	8
h	$2^{h+1}-1$	2^{h}

Some Basic Tree Properties
Nodes in a perfect binary tree of height h ?

$$
2^{n+1}-1 \geqslant n
$$

$$
2^{n+1}-1 \leftarrow
$$

Leaf nodes in a perfect binary tree of height h ? $2^{h+1} \geq n+1$
Height of a perfect binary tree with n nodes?

$$
\begin{aligned}
\log \left(l^{h+1}\right) & \geqslant \log (n+1) \\
h+1 & \geqslant \log (n h 1) \\
h & \geqslant \log (n+1)-1 \\
h & \geqslant \operatorname{ceil}(\log (n-1)-1)
\end{aligned}
$$

Now Formalizing: Binary Min-Heap Datastructure

More commonly known as a binary heap or simply a heap

- Structure Property:

A complete [binary] tree

- Heap-Order Property:

Every non-root node has a priority value larger than (or possibly equal to) the priority of its parent

Now Formalizing: Binary Min-Heap Datastructure

More commonly known as a binary heap or simply a heap

- Structure Property:

A complete [binary] tree

- Heap-Order Property:

Every non-root node has a priority value larger than (or possibly equal to) the priority of its parent

Properties of Binary Min-Heap

- Where is the minimum priority item?

-What is the height of a heap with n items?

$$
O(\log (n))
$$

(11) Poll Everywhere

Are these valid binary heaps?

Implementing Priority Queue ADT

Heap Operations

insert (16)

- insert(val): percolate up

Heap Operations

- findMin: retum not
- deleteMin: percolate down
- insert(val): percolate up

Operations: basic idea

- findMin:
return root.data
- deleteMin:

1. answer = root.data
2. Move right-most node in last row to root to restore structure property
3. "Percolate down" to restore heap order property

- insert:

1. Put new node in next position on bottom row to restore structure property
2. "Percolate up" to restore heap order property

Overall strategy:

- Preserve complete tree structure property
- This may break heap order property
- Percolate to restore heap order property

DeleteMin Implementation

1. Delete value at root node (and store it for later return)
2. There is now a "hole" at the root. We must "fill" the hole with another value, must have a tree with one less node, and it must still be a complete tree
3. The "last" node is the obvious choice, but now the heap order property is violated
4. We percolate down to fix the heap order:
```
While greater than either child
    Swap with smaller child
```


Percolate Down

Percolate down:

- Keep comparing with both children
- Move smaller child up and go down one level
- Done if both children are \geq item or reached a leaf node
- Why does this work? What is the run time?

DeleteMin: Run Time Analysis

- Run time is O (height of heap)
- A heap is a complete binary tree
- Height of a complete binary tree of n nodes?
height $=\left\lfloor\log _{2}(n)\right\rfloor$
- Run time of deleteMin is $O(\log n)$

Insert

- Add a value to the tree
- Structure and heap order properties must still be correct afterwards

Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node!
- So put our new data there and then focus on restoring the heap order property

Insert: Maintain the Heap Order property

Percolate up:

- Put new data in new location
- If parent larger, swap with parent, and continue
- Done if parent \leq item or reached root
-Why does this work? What is the run time?

Clever trick for storing the heap...

Need to have access to "next to use" position in the tree. Requires at minimum $\log (n) .$.

How could we get $0(1)$ average-case insertion?

Hint: why did we insist the tree be complete?

- All complete trees have the same edges, so we don't need to explicitly represent edges

Array Representation of a Binary Heap

From node i:
left child: $2 i$
right child: $2 i+1$
parent: Slor (i/L)

	A	B	C	D	E	F	G	H	I	J	K	L	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

- We skip index 0 to make the math simpler
- Actually, it can be a good place to store the current size of the heap

Array Representation of a Binary Heap

From node i:

	A	B	C	D	E	F	G	H	I	J	K	L	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

- We skip index 0 to make the math simpler
- Actually, it can be a good place to store the current size of the heap

Note: Exercises and P2 start counting from 0

Pseudocode: insert

```
void insert(int val) {
```

void insert(int val) {
if(size==arr.length-1)
if(size==arr.length-1)
resize();
resize();
size++;
size++;
i=percolateUp(size,val);
i=percolateUp(size,val);
arr[i] = val;
arr[i] = val;
}

```
}
```

This pseudocode uses ints. In real use, you will have data nodes with priorities.

```
```

int percolateUp(int hole,

```
```

int percolateUp(int hole,
int val) {
int val) {
while(hole > 1 \&\&
while(hole > 1 \&\&
val < arr[hole/2]){
val < arr[hole/2]){
arr[hole] = arr[hole/2];
arr[hole] = arr[hole/2];
hole = hole / 2;
hole = hole / 2;
}
}
return hole;
return hole;
}

```
```

}

```
```


Note: Exercises and P2 start counting from 0

Pseudocode: deleteMin

```
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown
            (1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}
```

int percolateDown (int hole,
while (2*hole <= size) \{
left $=2 *$ hole;
right $=$ left +1 ;
if(arr[left] < arr[right]
|| right > size)
target $=$ left;
else
target $=$ right;
if(arr[target] < val) \{
arr[hole] = arr[target];
hole = target;
\} else
break;
\}
return hole;
\}

	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{8 0}$	$\mathbf{4 0}$	$\mathbf{6 0}$	$\mathbf{8 5}$	$\mathbf{9 9}$	$\mathbf{7 0 0}$	$\mathbf{5 0}$				
0	1	2	3	4	5	6	7	8	9	10	11	12	13

