CSE 332: Data Structures & Parallelism Lecture 4: Priority Queues and Heaps

Arthur Liu Summer 2022

6/29/2022

Announcements

- Checkpoint 1 due last night
- EX02 due Friday

Today – Priority Queues and Heaps

- Priority Queue ADT
- Binary Min-Heap Datastructure
- (More recurrences on Friday)

Scenario

What is the difference between waiting for service at a pharmacy versus an ER?

Pharmacies usually follow the rule First Come, First Served

Queue FIFO

Emergency Rooms assign prioritiesPrioritybased on each individual's needQueue

Priority Queue ADT

State:

- Set of comparable elements
- Order based on "priority" Operations:
- insert(element)
- deleteMin() returns the element with the smallest priority, removes it from the collection
- findMin()

- Assume each item has a "priority"
 - The *lesser* item is the one with the *greater* priority
 - So "priority 1" is more important than "priority 4"
 - Just a convention, could also do a maximum priority

Aside: We will use ints as data <u>and</u> priority

For simplicity in lecture, we'll often suppose items are just **int**s and the **int** is also the priority

So an operation sequence could be

```
insert 6
insert 5
x = deleteMin // Now x = 5.
```

-int priorities are common, but really just need comparable

- Not having "other data" is very rare
 - Example: print job has a priority and the file to print is the data

Applications

Like all good ADTs, the priority queue arises often

- · Sometimes "directly", sometimes less obvious
- Run multiple programs in the operating system
 - "critical" before "interactive" before "compute-intensive"
 - Maybe let users set priority level
- Treat hospital patients in order of severity (or triage)
- Select print jobs in order of decreasing length?
- Forward network packets in order of urgency
- husson entany • Select most frequent symbols for data compression (peep CSE143)
- Sort: insert all, then repeatedly deleteMin

) heap soct

More applications

- "Greedy" algorithms
 - Select the 'best-looking' choice at the moment
 - Will see an example when we study graphs in a few weeks
- Discrete event simulation (system modeling, virtual worlds, ...)
 - Simulate how state changes when events fire
 - Each event e happens at some time t and generates new events e1, ..., en at times t+t1, ..., t+tn
 - Naïve approach: advance "clock" by 1 unit at a time and process any events that happen then
 - Better:
 - *Pending events* in a priority queue (priority = time happens)
 - Repeatedly: **deleteMin** and then **insert** new events
 - Effectively, "set clock ahead to next event"

Preliminary Implementations of Priority Queue ADT O(n),eth insert deleteMin 121121 insert at OLN Unsorted Array OLI) end D(N) α) Unsorted Linked-List login ()(N) $\mathcal{O}(1)$ Sorted Circular Array) O(N)jhst O(N) 0(1 Sorted Linked-List O(N) Q O(N) Binary Search Tree (BST) Notes: Worst case, Assume arrays have enough pace 6/29/2022 9

Need a good data structure!

- Next we will show an efficient, non-obvious data structure for this ADT
 - But first let's analyze some "obvious" ideas for *n* data items
 - All times worst-case; assume arrays "have room"

data	insert algorithm ,	/ time	deleteMin algori	thm / time
unsorted array	add at end	<i>O</i> (1)	search	<i>O</i> (<i>n</i>)
unsorted linked list	add at front	<i>O</i> (1)	search	O (<i>n</i>)
sorted circular array	search / shift	O (<i>n</i>)	move front	<i>O</i> (1)
sorted linked list	put in right place	e O(n)	remove at front	<i>O</i> (1)
binary search tree	put in right place	e O(n)	leftmost	O (<i>n</i>)

Aside: More on possibilities

- Note: If priorities are inserted in random order, binary search tree will likely do better than *O*(*n*)
 - O(log n) insert and O(log n) deleteMin on average
 - Could get same performance from a *balanced* binary search tree (e.g. AVL tree we will study later)
- One more idea: if priorities are 0, 1, ..., k can use array of lists
 - insert: add to front of list at arr[priority], O(1)
 - **deleteMin**: remove from lowest non-empty list O(k)

Our Data Structure: The Heap

The Heap:

- Worst case: O(log n) for insert
 - If items arrive in random order, then the average-case of insert is O(1) !!
- Worst case: O(log n) for deleteMin
- Very good constant factors

Key idea: Only pay for functionality needed

- We need something better than scanning unsorted items
- But we do not need to maintain a full sorted list
- Do "log"s remind you of anything? 📥 🌲 We will <u>visualize</u> our heap as a tree

6/29/2022

Q: Reviewing Some Tree Terminology

root(T): leaves(T): D-F, F, f, f-W children(B): D, f=, F parent(H): siblings(E): ancestors(F): descendents(G):subtree(G):

A: Reviewing Some Tree Terminology

<i>root</i> (T):	А	
leaves(T):	D-F, I, J-N	
children(B):	D, E, F	В
parent(H):	G	
siblings(E):	D, F	
ancestors(F):	В, А	
descendents(G):	H, I, J-N	
subtree(G):	G and its	() ()
	children	

Q: Some More Tree Terminology depth(B): 1 height(G): L height(**T**): 4 uegree(B): '3 egree(H) = 5branching factor(T): 0 - 5depth(H): 3 height (I) = 0

6/29/2022

A: Some More Tree Terminology

depth(B):	1
height(G):	2
height(T):	4
degree(B):	3
branching factor(T):	0-5

Binary tree:Every node has ≤2 childrenn-ary tree:Every node has ≤n childrenPerfect tree:Every row is completely fullComplete tree:All rows except possibly the bottom are completely full, and it is filled from left to	Types of Trees	Jegree or
n-ary tree:Every node has ≤n childrenPerfect tree:Every row is completely fullComplete tree:All rows except possibly the bottom are completely full, and it is filled from left to right	Binary tree:	Every node has ≤2 children
Perfect tree:Every row is completely fullComplete tree:All rows except possibly the bottom are completely full, and it is filled from left to right	n-ary tree:	Every node has ≤n children
Complete tree: All rows except possibly the bottom are completely full, and it is filled from left to	Perfect tree:	Every row is completely full
ngnt	Complete tree:	All rows except possibly the bottom are completely full, and it is filled from left to right
Perfect Tree Complete Tree	6/28/2022	Perfect Tree Complete Tree

More on Perfect Trees

Perfect tree: Every row is completely full

height	# of nodes	# of leaves
0	1	1
1	3	2
2	7	4
3	15	8
h	2 ^{h+1} - 1	2 ^h

Some Basic Tree Properties

 $2^{h+1} - 1 \neq \eta$ $2^{h+1} = 3 n + 1$ $\log(2^{h+1}) = \log(n+1)$ $h + 1 = 2 \log(n+1)$ $h = \log(n+1) - 1$ $h = \log(1 + 1) - 1$ $h = (\log(n+1) - 1)$

Now Formalizing: Binary Min-Heap Datastructure

More commonly known as a binary heap or simply a heap

- Structure Property: A complete [binary] tree
- Heap-Order Property: Every non-root node has a priority value larger than (or possibly equal to) the priority of its parent

Now Formalizing: Binary Min-Heap Datastructure

More commonly known as a binary heap or simply a heap

- Structure Property: A complete [binary] tree
- Heap-Order Property: Every non-root node has a priority value larger than (or possibly equal to) the priority of its parent

Properties of Binary Min-Heap

- Where is the minimum priority item?
- What is the height of a heap with n items? $O(\log(\gamma))$

6/29/2022

D Poll Everywhere

pollev.com/artliu

Are these valid binary heaps?

6/29/2022

Implementing Priority Queue ADT

Reminder Priority Queue ADT

State:

- Set of comparable elements
- Order based on "priority" Operations:
- insert(element)
- deleteMin() returns the element with the smallest priority, removes it from the collection
- findMin()

Heap Operations

• insert(val): percolate up

Heap Operations

- · findMin: return not
- deleteMin: percolate down
- insert(val): percolate up
 inser

Operations: basic idea

- findMin: return root.data
- deleteMin:
 - 1. answer = root.data
 - 2. Move right-most node in last row to root to restore structure property
 - 3. "Percolate down" to restore heap order property

• insert:

- 1. Put new node in next position on bottom row to restore structure property
- 2. "Percolate up" to restore heap order property

Overall strategy:

- Preserve complete tree structure property
- This may break heap order property
- Percolate to restore heap order property

DeleteMin Implementation

- 1. Delete value at root node (and store it for later return)
- 2. There is now a "hole" at the root. We must "fill" the hole with another value, must have a tree with one less node, and it must still be a complete tree
- 3. The "last" node is the obvious choice, but now the heap order property is violated
- 4. We percolate down to fix the heap order: While greater than either child Swap with smaller child

Percolate Down

Percolate down:

- Keep comparing with both children
- Move smaller child up and go down one level
- Done if both children are ≥ item or reached a leaf node
- Why does this work? What is the run time?

DeleteMin: Run Time Analysis

- Run time is O(height of heap)
- A heap is a complete binary tree
- Height of a complete binary tree of *n* nodes?
 height = L log₂(n) ↓
- Run time of **deleteMin** is $O(\log n)$

Insert

- Add a value to the tree
- Structure and heap order properties must still be correct afterwards

Insert: Maintain the <u>Structure</u> Property

- There is only one valid tree shape after we add one more node!
- So put our new data there and then focus on restoring the heap order property

Insert: Maintain the Heap Order property

Percolate up:

- Put new data in new location
- If parent larger, swap with parent, and continue
- Done if parent ≤ item or reached root
- Why does this work? What is the run time?

Clever trick for storing the heap...

Need to have access to "next to use" position in the tree. Requires at minimum log(n)...

How could we get O(1) average-case insertion?

Hint: why did we insist the tree be complete?

 All complete trees have the same edges, so we don't need to explicitly represent edges

Array Representation of a Binary Heap

- We skip index 0 to make the math simpler
- Actually, it can be a good place to store the current size of the heap

Array Representation of a Binary Heap

- We skip index 0 to make the math simpler
- Actually, it can be a good place to store the current size of the heap

Pseudocode: insert

```
void insert(int val) {
    if(size==arr.length-1)
        resize();
    size++;
    i=percolateUp(size,val);
    arr[i] = val;
}
```

This pseudocode uses ints. In real use, you will have data nodes with priorities.

	10	20	80	40	60	85	99	700	50				
0	1	2	3	4	5	6	7	8	9	10	11	12	13

6/29/2022

Pseudocode: deleteMin

This pseudocode uses ints. In real use, you

will have data nodes with priorities.

40