CSE 332: Data Structures & Parallelism
Lecture 4: Priority Queues and Heaps

Arthur Liu
Summer 2022

Announcements

* Checkpoint 1 due last night
 EXO2 due Friday

Today - Priority Queues and Heaps

* Priority Queue ADT
* Binary Min-Heap Datastructure

* (More recurrences on Friday)

Scenario

What is the difference between waiting for service at a pharmacy
versus an ER?

Pharmacies usually follow the rule

First Come, First Served Queue

Emergency Rooms assign priorities Priority
based on each individual's need Queue

Priority Queue ADT

Priority Queue ADT

State: insert
 Set of comparable elements
* QOrder based on “priority”

deleteMin

é

Operations:

* insert(element) » Assume each item has a “priority”

* deleteMin() - returns the * The lesser item is the one with the
element with the smallest greater priority
priority, removes it from the e So “priority 1”7 is more important than
collection “priority 4”

* findMin() Just a convention, could also do a

maximum priority

6/29/2022 5

Aside: We will use ints as data and priority

For simplicity in lecture, we’ll often suppose items are just ints and
the int is also the priority

* SO0 an operation sequence could be
insert 6
insert 5
x = deleteMin // Now x = 5.
—int priorities are common, but really just need comparable

* Not having “other data” is very rare
 Example: print job has a priority and the file to print is the data

Applications

Like all good ADTs, the priority queue arises often
 Sometimes “directly”, sometimes less obvious

* Run multiple programs in the operating system
» “critical” before “interactive” before “compute-intensive”
* Maybe let users set priority level

* Treat hospital patients in order of severity (or triage)
* Select print jobs in order of decreasing length?
* Forward network packets in order of urgency

* Select most frequent symbols for data compression (peep CSE143)
e Sort: insert all, then repeatedly deleteMin

More applications

e “Greedy” algorithms
e Select the ‘best-looking’ choice at the moment
* Will see an example when we study graphs in a few weeks

* Discrete event simulation (system modeling, virtual worlds, ...)
* Simulate how state changes when events fire

 Each event e happens at some time t and generates new events el, ..., en at
times t+t1, ..., t+tn

* Nailve approach: advance “clock” by 1 unit at a time and process any events that
happen then
* Better:
* Pending events in a priority queue (priority = time happens)
* Repeatedly: deleteMin and then insert new events
» Effectively, “set clock ahead to next event”

Preliminary Implementations of Priority Queue ADT

nsert

deleteMin

Unsorted Array

Unsorted Linked-List

Sorted Circular Array

Sorted Linked-List

Binary Search Tree (BST)

6/29/2022

Notes: Worst case, Assume arrays have enough space

Need a good data structure!

* Next we will show an efficient, non-obvious data structure for this ADT
* But first let’s analyze some “obvious” ideas for n data items
* All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time
unsorted array add at end O(1) search O(n)
unsorted linked list add at front O(1) search O(n)
sorted circular array search / shift O(n) move front O(1)
sorted linked list put in right place O(n) remove at front O(1)

binary search tree putin right place O(n) leftmost O(n)

Aside: More on possibilities

* Note: If priorities are inserted in random order, binary search
tree will likely do better than O(n)
* O(logn) insert and O(log n) deleteMin on average

* Could get same performance from a balanced binary search tree
(e.g. AVL tree we will study later)

* One more idea: if priorities are O, 1, ..., k can use array of lists
* insert: add to front of list at arr [priority], O(1)
* deleteMin: remove from lowest non-empty list O(k)

Our Data Structure: The Heap

The Heap:

* Worst case: O(log n) for insert
 If items arrive in random order, then the average-case of insert is O(1) !!

* Worst case: O(log n) for deleteMin
* Very good constant factors

Key idea: Only pay for functionality needed
* We need something better than scanning unsorted items

 But we do not need to maintain a full sorted list

* Do “log”s remind you of anything? A A We will visualize our heap as a tree

Q: Reviewing Some Tree Terminology
root(T):
leaves(T):
children(B):
parent(H):
siblings(E):
ancestors(F):
descendents(Q):
subtree(Q):

6/29/2022

Tree T

13

A: Reviewing Some Tree Terminology

root(T): A Tree T
leaves(T): D-F, |, J-N

children(B): D,E, F

parent(H): G

siblings(E): D, F

ancestors(F): B, A

descendents(G): H, |, J-N

subtree(G): G and its

children

6/29/2022

Q: Some More Tree Terminology
depth(B):

height(G):

height(T):

degree(B):

branching factor(T):

Tree T

6/29/2022 15

A: Some More Tree Terminology

depth(B): 1 free T
height(G): 2
height(T): 4
degree(B): 3

branching factor(T): 0-5

6/29/2022

Types of Trees

Binary tree: Every node has <2 children

n-ary tree: Every node has <n children

Perfect tree: Every row is completely full

Complete tree: All rows except possibly the bottom are
completely full, and it is filled from left to
right

S A

Perfect Tree Complete Tree

6/29/2022

17

More on Perfect Trees

Perfect tree: Every row is completely full

S

Perfect Tree

6/29/2022

18

More on Perfect Trees

Perfect tree: Every row is completely full

S

Perfect Tree

6/29/2022

height # of nodes # of leaves
0] 1 1
1 3 2
2 7 4
3 15 8
h on+i-q on

19

Some Basic Tree Properties

Nodes in a perfect binary tree of height h?
2h+11

Leaf nodes in a perfect binary tree of height h?
2h

Height of a perfect binary tree with n nodes?
|log, n]

Height of a complete binary tree with n nodes?
|log, n]

Now Formalizing: Binary Min-Heap Datastructure

More commonly known as a binary heap or simply a heap

e Structure Property:
A complete [binary] tree

 Heap-Order Property:
Every non-root node has a priority value larger than (or possibly
equal to) the priority of its parent

Now Formalizing: Binary Min-Heap Datastructure

More commonly known as a binary heap or simply a heap

e Structure Property:
A complete [binary] tree

 Heap-Order Property:
Every non-root node has a priority value larger than (or possibly
equal to) the priority of its parent

6/29/2022 22

Properties of Binary Min-Heap

* Where is the minimum priority item?

* What is the height of a heap with n items?

6/29/2022

23

@ Poll Everywhere pollev.com/artliu

Are these valid binary heaps?

6/29/2022 o

Implementing Priority Queue ADT

State: insert
 Set of comparable elements
* QOrder based on “priority”

Operations:

* insert(element)

* deleteMin() - returns the
element with the smallest
priority, removes it from the

collection
e findMin()

deleteMin

é

6/29/2022

Heap Operations

* insert(val): percolate up

6/29/2022

26

Heap Operations

* findMin:
* deleteMin: percolate down

6/29/2022

27

Operations: basic idea

* findMin:

return root.data

* deleteMin:

1. answer = root.data

2. Move right-most node in last row to
root to restore structure property

3. “Percolate down” to restore heap
order property

* insert:

1. Put new node in next position on
bottom row to restore structure
property

2. “Percolate up” to restore heap

order property

Overall strategy:

Preserve complete tree
structure property

This may break heap order
property

Percolate to restore heap
order property

DeleteMin Implementation

1.

Delete value at root node (and store it for
later return)

There is now a "hole" at the root. We must
"fill" the hole with another value, must have
a tree with one less node, and it must still
be a complete tree

The "last" node is the obvious choice, but
now the heap order property is violated

We percolate down to fix the heap order:
While greater than either child
Swap with smaller child

Percolate Down

Percolate down:

« Keep comparing with both children

* Move smaller child up and go down one level

» Done if both children are > item or reached a leaf node
* Why does this work? What is the run time?

DeleteMin: Run Time Analysis

* Run time is O(height of heap)
* A heap is a complete binary tree

* Height of a complete binary tree of n nodes?
height =|. 1og,(n) |

* Run time of deleteMin is O(1log n)

Insert

 Add a value to the tree

e Structure and heap order
properties must still be
correct afterwards

Insert: Maintain the Structure Property

* There is only one valid tree
shape after we add one more
node!

e SO0 put our new data there and
then focus on restoring the
heap order property

Insert: Maintain the Heap Order property

Percolate up:

« Put new data in new location

« If parent larger, swap with parent, and continue
» Done if parent < item or reached root

« Why does this work? What is the run time?

Clever trick for storing the heap...

Need to have access to “next to use”
position in the tree. Requires at
minimum log(n)...

How could we get O(1) average-case
insertion?

Hint: why did we insist the tree be
complete?
* All complete trees have the same

edges, so we don’t need to explicitly
represent edges

Note: Exercises and P2 start counting from O

Array Representation of a Binary Heap

From node i:
left child:
right child:
parent:

A B C D E F | G H I J K L
O 1 2 3 4 5 6 I 8 9 10 11 12 13

* We skip index O to make the math simpler

e Actually, it can be a good place to store the current size of
the heap

6/29/2022

Note: Exercises and P2 start counting from O

Array Representation of a Binary Heap

From node i:

left child: 21

right child: 2i+1
parent: floor(i / 2)

A B C D E F | G H I J K L
O 1 2 3 4 5 6 I 8 9 10 11 12 13

* We skip index O to make the math simpler

e Actually, it can be a good place to store the current size of
the heap

6/29/2022

Note: Exercises and P2 start counting from O

Pseudocode: insert

void insert(int wval) {
if (size==arr.length-1)
resize () ;

This pseudocode uses ints. In real use, you
will have data nodes with priorities.

int percolateUp (int hole,
int val) {
while (hole > 1 &&
val < arr[hole/2]) {

size++; arr [hole] = arr[hole/2];
i=percolateUp(size,val) ; hole = hole / 2;
arr[i] = wval; }
return hole;
})
10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50

6/29/2022

39

Note: Exercises and P2 start counting from O

Pseudocode: deleteMin

int deleteMin () {
if (isEmpty()) throw..
ans = arr[l];

hole = percolateDown
(1,arr[size]) ;
arr[hole] =
size--;
return ans;

arr[size];

This pseudocode uses ints. In real use, you
will have data nodes with priorities.

int percolateDown (int hole,

int val) {
while (2*hole <= size) {
left = 2*hole;
right = left + 1;

if (arr[left] < arr[right]
| | right > size)
target = left;
else
target = right;
if (arr[target] < wval) {
arr [hole] = arr[target];
hole = target;
} else
break;
}

return hole;

}

10 | 20 | 80 | 40 | 60

85

99 | 700 | 50

6/29/2022

7 8 9 10 11 12 13

40

Note: Exercises and P2 start counting from O

Example

1. insert: 16, 32, 4, 57, 80, 43, 2
2. deleteMin

6/29/2022

Note: Exercises and P2 start counting from O

Example: After insertion

1. insert: 16, 32, 4, 57, 80, 43, 2

2. deleteMin

32

57

80

43

16

42

6/29/2022

Note: Exercises and P2 start counting from O

Example: After deletion

1. insert: 16, 32, 4, 57, 80, 43, 2

2. deleteMin

32

57

80

43

43

So why O(1) average-case insert?

* Yes, insert's worst case is O(log n)

* The trick is that it all depends on the order the items are inserted
(What is the worst case order?)

* Experimental studies of randomly ordered inputs shows the
following:

* Average 2.607 comparisons per insert
(# of percolation passes)

* An element usually moves up 1.607 levels

* deleteMin is average O(log n)

* Moving a leaf to the root usually requires re-percolating that value back to
the bottom

Evaluating the Array Implementation...

Advantages.
Minimal amount of wasted space:
* Only index O and any unused space on right in the array
* No "holes" due to complete tree property
* No wasted space representing tree edges
Fast lookups:
* Benefit of array lookup speed

* Multiplying and dividing by 2 is extremely fast (can be done through bit
shifting (s%e CSE 351)

. !_adc,t used position is easily found by using the PQueue's size for the
index

Disdvantages.:

 What if the array gets too full (or wastes space by being too empty)?
Array will have to be resized.

Advantages outweigh Disadvantages: This is how it is done! E ® /
P =X |

6/29/2022 46

Other (specialized) operations

* decreasekKey: given pointer to object in priority queue (e.g., its
array index), lower its priority value by p
* Change priority and percolate up
* increasekKey: given pointer to object in priority queue (e.g., its
array index), raise its priority value by p
* Change priority and percolate down

* remove: given pointer to object in priority queue (e.g., its array
index), remove it from the queue
* decreaseKey with p = o, then deleteMin

Running time for all these operations?

Building a Heap

Suppose you have n items you want to put in a new priority queue
* A sequence of n insert operations works
 Runtime?

Can we do better?

* If we only have access to insert and deleteMin operations,
then NO.

* There is a faster way - O(n), but that requires the ADT to have a
specialized buildHeap operation

Floyd's buildHeap Method

Recall our general strategy for working with the heap:
* Preserve structure property
* Break and restore heap ordering property

Floyd’s buildHeap:

1. Create a complete tree by putting the n items in array indices
1,.... N

(Requires having all the elements that we want to insert all at once!)

2. Treat the array as a heap and fix the heap-order property
Exactly how we do this is where we gain efficiency

Thinking about buildHeap

e Say we start with this array:
[12,5,11,3,10,2,9,4,8,1,7,6] @®

* To “fix” the ordering should we (5) (17)
use:

* percolateUp?
e percolateDown? e @ 9 9
GEOOOE

Note: Exercises and P2 start counting from O

Floyd's buildHeap Method

percolateDown, bottom-up:
* Leaves are already in heap order
 Work up toward the root one level at a time

void buildHeap () ({
for (i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val) ;
arr[hole] = wval;

}
}

buildHeap Example

e Say we start with this array:
[12,5,11,3,10,2,9,4,8,1,7,06]

* In tree form for readability

 Red for node not less than
descendants

* heap-order problem
 Notice no leaves are red

* Check/fix each non-leaf bottom-up
(6 steps here)

Q) @ @ @
OEEOOE

buildHeap Example

* Happens to already be less than child

6/29/2022

53

buildHeap Example

OOOOE OOOWOE

* Percolate down (notice that moves 1 up)

6/29/2022

54

buildHeap Example

* Another nothing-to-do step

6/29/2022

55

buildHeap Example

D O @ 0 @ O © «
OOOWOE OJOIDIOI®

* Percolate down as necessary (steps 4a
and 4b)

buildHeap Example

buildHeap Example

But is it right?

¢ “Seems to work”
* Let’s prove it restores the heap property (correctness)
* Then let’s prove its running time (efficiency)

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown (i,val);
arr[hole] = wval;

}
}

Correctness

void buildHeap () {
size/2; i>0; i--) {

for(1 =
val = arr[i];
hole = percolateDown(i,val) ;
arr[hole] = wval;

}
}

Loop Invariant: For all 3>1, arr[j] is less than its children

* True initially: If § > size/2,then jis a leaf
e Otherwise its left child would be at position > size
ercolateDown make

e True after one more iteration: loop body and ;ta
arr[i] less than children without breaklng he property for any

descendants
So after the loop finishes, all nodes are less than their children

6/29/2022

60

Loop Invariant:

Forall 9>i, arr[7j] is less than its children void buildHeap() ({
« True initially: for(i = size/2; i>0; i--) {
. val = arr[i];

If 3 > size/2,then jis a leaf .
hole = percolateDown(i,val);

 True after one more iteration: arr[hole] = val;
loop body and percolateDown }
make arr [1] less than children }
without breaking the property Ca0)

for any descendants

So after the loop finishes, @ @

all nodes are less than their children

40 | 20 | 80 | 30 | 61 | 5 9 700 50 | 60

6/29/2022

Efficiency

void buildHeap () {
for(i = size/2; 1i>0; i--) {

val = arr[i];
hole = percolateDown (i,val);
arr[hole] = wval;

}
}
Easy argument: buildHeap is O(n 1log n) where n is size

« size/2 loop iterations
* Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of the
algorithm...

void buildHeap () {
for(i = size/2; i>0; i--) {

EfflClency val = arr[i];
hole = percolateDown(i,val) ;
arr[hole] = wval;

}
}

Better argument: buildHeap is O(n) where nis size

6/29/2022 63

void buildHeap () {
for(i = size/2; i>0; i--) {

EfflClency val = arr[i];
hole = percolateDown(i,val) ;
arr[hole] = wval;

}
}
Better argument: buildHeap is O(n) where nis size
* size/2 total loop iterations: O(n)
* 1/2 the loop iterations percolate at most 1 step
* 1/4 the loop iterations percolate at most 2 steps
* 1/8 the loop iterations percolate at most 3 steps... etc.

e (1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) = 2 (page 4 of Weiss)
e Soatmost 2 (size/2) total percolate steps: O(n)
* Also see Weiss 6.3.4, sum of heights of nodes in a perfect tree

Lessons from buildHeap

* Without buildHeap, our ADT already let clients implement
their own in 6(n 1og n) worst case
* Worst case is inserting lower priority values later

* By providing a specialized operation internally (with access to
the data structure), we can do O(n) worst case
* |ntuition: Most data is near a leaf, so better to percolate down

e Can analyze this algorithm for:
e Correctness: Non-trivial inductive proof using loop invariant
e Efficiency:
* First analysis easily proved it was O(n 1og n)
* A “tighter” analysis shows same algorithm is O(n)

More heaps (see Weiss if curious)

» d-heaps: have d children instead of 2 (Weiss 6.5)
 Makes heaps shallower, useful for heaps too big for memory
 How does this affect the asymptotic run-time (for small d’s)?

» Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)

e Different data structures for priority queues that support a logarithmic
time merge operation (impossible with binary heaps)

* merge: given two priority queues, make one priority queue
* Insert & deleteMin defined in terms of merge

Aside: How might you merge binary heaps:

* If one heap is much smaller than the other?
e |f both are about the same size?

