
CSE 332: Data Structures & Parallelism
Lecture 4: Priority Queues and Heaps

Arthur Liu
Summer 2022

6/29/2022 1



Announcements

• Checkpoint 1 due last night
• EX02 due Friday

6/29/2022 2



Today – Priority Queues and Heaps

• Priority Queue ADT
• Binary Min-Heap Datastructure

• (More recurrences on Friday)

6/29/2022 3



Scenario

What is the difference between waiting for service at a pharmacy 
versus an ER?

Pharmacies usually follow the rule
First Come, First Served

Emergency Rooms assign priorities 
based on each individual's need

Queue

Priority
Queue

6/29/2022 4



Priority Queue ADT

• Assume each item has a “priority”
• The lesser item is the one with the 

greater priority
• So “priority 1” is more important than 

“priority 4”
• Just a convention, could also do a 

maximum priority

6/29/2022 5

Priority Queue ADT

State:
• Set of comparable elements
• Order based on “priority”

Operations:
• insert(element)
• deleteMin() – returns the 

element with the smallest 
priority, removes it from the 
collection

• findMin()

insert deleteMin

6        2
15        23

12   18
45   3    7



Aside: We will use ints as data and priority

For simplicity in lecture, we’ll often suppose items are just ints and 
the int is also the priority
• So an operation sequence could be

insert 6
insert 5
x = deleteMin // Now x = 5.

–int priorities are common, but really just need comparable
• Not having “other data” is very rare
• Example: print job has a priority and the file to print is the data

6/29/2022 6



Applications

Like all good ADTs, the priority queue arises often
• Sometimes “directly”, sometimes less obvious

• Run multiple programs in the operating system
• “critical” before “interactive” before “compute-intensive”
• Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)
• Select print jobs in order of decreasing length?
• Forward network packets in order of urgency
• Select most frequent symbols for data compression (peep CSE143)
• Sort: insert all, then repeatedly deleteMin

6/29/2022 7



More applications

• “Greedy” algorithms
• Select the ‘best-looking’ choice at the moment
• Will see an example when we study graphs in a few weeks

• Discrete event simulation (system modeling, virtual worlds, …)
• Simulate how state changes when events fire
• Each event e happens at some time t and generates new events e1, …, en at 

times t+t1, …, t+tn
• Naïve approach: advance “clock” by 1 unit at a time and process any events that 

happen then
• Better:

• Pending events in a priority queue (priority = time happens)
• Repeatedly: deleteMin and then insert new events
• Effectively, “set clock ahead to next event”

6/29/2022 8



6/29/2022

insert deleteMin

Unsorted Array

Unsorted Linked-List

Sorted Circular Array

Sorted Linked-List

Binary Search Tree (BST)

Preliminary Implementations of Priority Queue ADT

Notes: Worst case, Assume arrays have enough space 9



Need a good data structure!

• Next we will show an efficient, non-obvious data structure for this ADT
• But first let’s analyze some “obvious” ideas for n data items
• All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time
unsorted array add at end           O(1)        search                 O(n)
unsorted linked list    add at front         O(1)        search                 O(n)
sorted circular array   search / shift      O(n)        move front          O(1)
sorted linked list put in right place O(n)        remove at front  O(1)
binary search tree      put in right place O(n)       leftmost               O(n)

6/29/2022 10



Aside: More on possibilities

• Note: If priorities are inserted in random order, binary search 
tree will likely do better than O(n)  
• O(log n) insert and O(log n) deleteMin on average
• Could get same performance from a balanced binary search tree

(e.g. AVL tree we will study later)

• One more idea: if priorities are 0, 1, …, k can use array of lists
• insert: add to front of list at arr[priority], O(1)
• deleteMin: remove from lowest non-empty list O(k)

6/29/2022 11



Our Data Structure: The Heap

The Heap:
• Worst case: O(log n) for insert

• If items arrive in random order, then the average-case of insert is O(1) !!

• Worst case: O(log n) for deleteMin
• Very good constant factors

Key idea: Only pay for functionality needed
• We need something better than scanning unsorted items
• But we do not need to maintain a full sorted list

• Do “log”s remind you of anything? 🌲🌲 We will visualize our heap as a tree
6/29/2022 12



Q: Reviewing Some Tree Terminology

A

E

B

D F

C

G

IH

LJ MK N

Tree T

6/29/2022

root(T): 
leaves(T):
children(B):
parent(H):
siblings(E):
ancestors(F):
descendents(G):
subtree(G):

13



A: Reviewing Some Tree Terminology
root(T): 
leaves(T):
children(B):
parent(H):
siblings(E):
ancestors(F):
descendents(G):
subtree(G):

A

E

B

D F

C

G

IH

LJ MK N

Tree TA
D-F, I, J-N
D, E, F
G
D, F
B, A
H, I, J-N
G and its
children

6/29/2022 14



6/29/2022

A

E

B

D F

C

G

IH

LJ MK N

Tree T

Q: Some More Tree Terminology
depth(B):
height(G):
height(T):
degree(B):
branching factor(T):

15



A: Some More Tree Terminology
1
2
4
3
0-5

A

E

B

D F

C

G

IH

LJ MK N

Tree T

6/29/2022

depth(B):
height(G):
height(T):
degree(B):
branching factor(T):

16



Types of Trees
Binary tree:  Every node has ≤2 children

n-ary tree:  Every node has ≤n children

Perfect tree:  Every row is completely full

Complete tree:  All rows except possibly the bottom are 
completely full, and it is filled from left to 
right

Perfect Tree Complete Tree
6/29/2022 17



More on Perfect Trees
Perfect tree: Every row is completely full

Perfect Tree

6/29/2022 18



More on Perfect Trees
Perfect tree: Every row is completely full

Perfect Tree

6/29/2022 19

height # of nodes # of leaves

0
1
2
3
h

1
3
7

15
2h+1 - 1

1
2
4
8
2h



Some Basic Tree Properties

Nodes in a perfect binary tree of height h?
2h+1-1

Leaf nodes in a perfect binary tree of height h?
2h

Height of a perfect binary tree with n nodes?
⌊log2 n⌋

Height of a complete binary tree with n nodes?
⌊log2 n⌋

6/29/2022 20



Now Formalizing: Binary Min-Heap Datastructure

6/29/2022

More commonly known as a binary heap or simply a heap
• Structure Property: 

A complete [binary] tree
• Heap-Order Property:

Every non-root node has a priority value larger than (or possibly 
equal to) the priority of its parent

21



Now Formalizing: Binary Min-Heap Datastructure

2513

8020

30

856040

8020

10

700 50

99

A Heap Not a Heap

6/29/2022

More commonly known as a binary heap or simply a heap
• Structure Property: 

A complete [binary] tree
• Heap-Order Property:

Every non-root node has a priority value larger than (or possibly 
equal to) the priority of its parent

22



Properties of Binary Min-Heap

• Where is the minimum priority item?

• What is the height of a heap with n items?

6/29/2022 23

856040

8020

10

700 50

99



6/29/2022

pollev.com/artliu

Are these valid binary heaps?

24

45

3

64

5

5

64

5

8

67

5

9

1) 2)

3) 4)



Implementing Priority Queue ADT

6/29/2022 25

Priority Queue ADT

State:
• Set of comparable elements
• Order based on “priority”

Operations:
• insert(element)
• deleteMin() – returns the 

element with the smallest 
priority, removes it from the 
collection

• findMin()

insert deleteMin

6        2
15        23

12   18
45   3    7

Reminder :)



• insert(val): percolate up

856040

8020

10

700 50

99

65

6/29/2022

Heap Operations

26



6/29/2022

856040

8020

10

700 50

99

65

27

• findMin:
• deleteMin: percolate down
• insert(val): percolate up

Heap Operations



Operations: basic idea
• findMin: 

return root.data
• deleteMin: 

1. answer = root.data
2. Move right-most node in last row to 

root to restore structure property
3. “Percolate down” to restore heap 

order property
• insert:

1. Put new node in next position on 
bottom row to restore structure 
property

2. “Percolate up” to restore heap 
order property

856040

8020

10

700 50

99

Overall strategy:
• Preserve complete tree 

structure property
• This may break heap order 

property
• Percolate to restore heap 

order property

6/29/2022 28



DeleteMin Implementation
1.  Delete value at root node (and store it for 

later return)
2. There is now a "hole" at the root. We must 

"fill" the hole with another value, must have 
a tree with one less node, and it must still 
be a complete tree

3. The "last" node is the obvious choice, but 
now the heap order property is violated

4. We percolate down to fix the heap order:
While greater than either child

Swap with smaller child

34

9857

106911

34

9857

106911

10

6/29/2022 29



Percolate Down

Percolate down: 
• Keep comparing with both children 
• Move smaller child up and go down one level
• Done if both children are ³ item or reached a leaf node
• Why does this work? What is the run time?

34

9857

10

6911

4

9857

10

6911

3

84

91057

6911

3
?

?

6/29/2022 30



DeleteMin: Run Time Analysis

• Run time is O(height of heap)

• A heap is a complete binary tree

• Height of a complete binary tree of n nodes?
height = ë log2(n) û

• Run time of deleteMin is O(log n)

6/29/2022 31



Insert

• Add a value to the tree

• Structure and heap order 
properties must still be 
correct afterwards

84

91057

6911

1

2

6/29/2022 32



Insert: Maintain the Structure Property

• There is only one valid tree 
shape after we add one more 
node!

• So put our new data there and 
then focus on restoring the 
heap order property

6/29/2022

84

91057

6911

1

2

33



Insert: Maintain the Heap Order property

2

84

91057

6911

1

Percolate up:
• Put new data in new location
• If parent larger, swap with parent, and continue
• Done if parent £ item or reached root
• Why does this work? What is the run time?

?

2
5

84

9107

6911

1

?

2

5

8

91047

6911

1?

6/29/2022 34



Clever trick for storing the heap…

Need to have access to “next to use” 
position in the tree. Requires at 
minimum log(n)…

How could we get O(1) average-case 
insertion?

Hint: why did we insist the tree be 
complete?
• All complete trees have the same 

edges, so we don’t need to explicitly 
represent edges

6/29/2022 35

84

91057

6911

1



Array Representation of a Binary Heap 

From node i:
left child: 
right child:    
parent: 

• We skip index 0 to make the math simpler
• Actually, it can be a good place to store the current size of 

the heap

GED

CB

A

J KH I

F

L

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

6/29/2022

Note: Exercises and P2 start counting from 0

36



Array Representation of a Binary Heap 

From node i:
left child: 2i
right child:    2i+1
parent: floor(i / 2)

• We skip index 0 to make the math simpler
• Actually, it can be a good place to store the current size of 

the heap

GED

CB

A

J KH I

F

L

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

6/29/2022

Note: Exercises and P2 start counting from 0

37



Pseudocode: insert
void insert(int val) {

if(size==arr.length-1)
resize();

size++;
i=percolateUp(size,val);
arr[i] = val;

}

int percolateUp(int hole, 
int val) {

while(hole > 1 &&
val < arr[hole/2]){

arr[hole] = arr[hole/2];
hole = hole / 2;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints.  In real use, you 
will have data nodes with priorities.

6/29/2022

Note: Exercises and P2 start counting from 0

39



int deleteMin() {
if(isEmpty()) throw…
ans = arr[1];
hole = percolateDown

(1,arr[size]);
arr[hole] = arr[size];
size--;
return ans;

}

int percolateDown(int hole,
int val) {

while(2*hole <= size) {
left = 2*hole; 
right = left + 1;
if(arr[left] < arr[right]

|| right > size)
target = left;

else
target = right;

if(arr[target] < val) {
arr[hole] = arr[target];
hole = target;

} else
break;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints.  In real use, you 
will have data nodes with priorities.

6/29/2022

Note: Exercises and P2 start counting from 0

40

Pseudocode: deleteMin



Example

1. insert: 16, 32, 4, 57, 80, 43, 2
2. deleteMin

6/29/2022

0 1 2 3 4 5 6 7

Note: Exercises and P2 start counting from 0

41



Example: After insertion

1. insert: 16, 32, 4, 57, 80, 43, 2
2. deleteMin

2 32 4 57 80 43 16
0 1 2 3 4 5 6 7

168057

432

2

43

6/29/2022

Note: Exercises and P2 start counting from 0

42



Example: After deletion

1. insert: 16, 32, 4, 57, 80, 43, 2
2. deleteMin

4 32 16 57 80 43
0 1 2 3 4 5 6 7

8057

1632

4

43

6/29/2022

Note: Exercises and P2 start counting from 0

43



So why O(1) average-case insert?

• Yes, insert's worst case is O(log n)
• The trick is that it all depends on the order the items are inserted 

(What is the worst case order?)
• Experimental studies of randomly ordered inputs shows the 

following:
• Average 2.607 comparisons per insert

(# of percolation passes)
• An element usually moves up 1.607 levels 

• deleteMin is average O(log n)
• Moving a leaf to the root usually requires re-percolating that value back to 

the bottom

6/29/2022 44



Evaluating the Array Implementation…
Advantages:

Minimal amount of wasted space:
• Only index 0 and any unused space on right in the array
• No "holes" due to complete tree property
• No wasted space representing tree edges
Fast lookups:
• Benefit of array lookup speed
• Multiplying and dividing by 2 is extremely fast (can be done through bit 

shifting (see CSE 351)
• Last used position is easily found by using the PQueue's size for the 

index
Disdvantages: 

• What if the array gets too full (or wastes space by being too empty)? 
Array will have to be resized.

Advantages outweigh Disadvantages: This is how it is done!

6/29/2022 46



Other (specialized) operations

• decreaseKey: given pointer to object in priority queue (e.g., its 
array index), lower its priority value by p
• Change priority and percolate up

• increaseKey: given pointer to object in priority queue (e.g., its 
array index), raise its priority value by p
• Change priority and percolate down

• remove: given pointer to object in priority queue (e.g., its array 
index), remove it from the queue
• decreaseKey with p = ¥, then deleteMin

Running time for all these operations?

6/29/2022 47



Building a Heap

Suppose you have n items you want to put in a new priority queue
• A sequence of n insert operations works
• Runtime?

Can we do better?
• If we only have access to insert and deleteMin operations, 

then NO.
• There is a faster way - O(n), but that requires the ADT to have a 

specialized buildHeap operation

6/29/2022 48



Floyd’s buildHeap Method

Recall our general strategy for working with the heap: 
• Preserve structure property 
• Break and restore heap ordering property 

Floyd’s buildHeap:
1. Create a complete tree by putting the n items in array indices 

1, . . ..  N
(Requires having all the elements that we want to insert all at once!)

2. Treat the array as a heap and fix the heap-order property 
Exactly how we do this is where we gain efficiency 

6/29/2022 49



Thinking about buildHeap

• Say we start with this array:
[12,5,11,3,10,2,9,4,8,1,7,6]

• To “fix” the ordering should we 
use:
• percolateUp?
• percolateDown?

6/29/2022

6718

92103

115

12

4

50



Floyd’s buildHeap Method

percolateDown, bottom-up: 
• Leaves are already in heap order 
• Work up toward the root one level at a time 

6/29/2022

Note: Exercises and P2 start counting from 0

void buildHeap() {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

51



buildHeap Example

• Say we start with this array:
[12,5,11,3,10,2,9,4,8,1,7,6]

• In tree form for readability
• Red for node not less than 

descendants 
• heap-order problem

• Notice no leaves are red
• Check/fix each non-leaf bottom-up 

(6 steps here)

6/29/2022

6718

92103

115

12

4

52



buildHeap Example

6/29/2022

6718

92103

115

12

4 6718

92103

115

12

4

Step 1

• Happens to already be less than child

53



6/29/2022

6718

92103

115

12

4

Step 2

• Percolate down (notice that moves 1 up)

67108

9213

115

12

4

buildHeap Example

54



6/29/2022

Step 3

• Another nothing-to-do step

67108

9213

115

12

4 67108

9213

115

12

4

buildHeap Example

55



6/29/2022

Step 4

• Percolate down as necessary (steps 4a 
and 4b)

117108

9613

25

12

467108

9213

115

12

4

buildHeap Example

56



6/29/2022

Step 5

117108

9653

21

12

4117108

9613

25

12

4

buildHeap Example

57



6/29/2022

Step 6

117108

9654

23

1

12117108

9653

21

12

4

buildHeap Example

58



But is it right?

• “Seems to work”
• Let’s prove it restores the heap property (correctness)
• Then let’s prove its running time (efficiency)

6/29/2022

void buildHeap() {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

59



Correctness

Loop Invariant: For all j>i, arr[j] is less than its children
• True initially: If j > size/2, then j is  a leaf

• Otherwise its left child would be at position > size
• True after one more iteration: loop body and percolateDown make 
arr[i] less than children without breaking the property for any 
descendants

So after the loop finishes, all nodes are less than their children

6/29/2022

void buildHeap() {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

60



6/29/2022

40 20 80 30 61 5 9 700 50 60
0 1 2 3 4 5 6 7 8 9 10 11 12 13

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

961
30

8020

40

700 50

5

60

Loop Invariant:
For all j>i, arr[j] is less than its children

• True initially: 
If j > size/2, then j is  a leaf

• True after one more iteration: 
loop body and percolateDown
make arr[i] less than children 
without breaking the property 
for any descendants

So after the loop finishes, 
all nodes are less than their children

61



Efficiency

Easy argument:  buildHeap is O(n log n) where n is size
• size/2 loop iterations
• Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of the 
algorithm…

6/29/2022

void buildHeap() {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

62



Efficiency

Better argument:  buildHeap is O(n) where n is size

6/29/2022

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

63



Efficiency

Better argument:  buildHeap is O(n) where n is size
• size/2 total loop iterations: O(n)
• 1/2 the loop iterations percolate at most 1 step
• 1/4 the loop iterations percolate at most 2 steps
• 1/8 the loop iterations percolate at most 3 steps… etc.
• ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) = 2 (page 4 of Weiss)

• So at most 2(size/2) total percolate steps: O(n) 
• Also see Weiss 6.3.4, sum of heights of nodes in a perfect tree

6/29/2022

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

64



Lessons from buildHeap

• Without buildHeap, our ADT already let clients implement 
their own in q(n log n) worst case
• Worst case is inserting lower priority values later

• By providing a specialized operation internally (with access to 
the data structure), we can do O(n) worst case
• Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:
• Correctness: Non-trivial inductive proof using loop invariant
• Efficiency:

• First analysis easily proved it was O(n log n)
• A “tighter” analysis shows same algorithm is O(n)

6/29/2022 65



More heaps (see Weiss if curious)

• d-heaps: have d children instead of 2 (Weiss 6.5)
• Makes heaps shallower, useful for heaps too big for memory
• How does this affect the asymptotic run-time (for small d’s)?

• Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)
• Different data structures for priority queues that support a logarithmic 

time merge operation (impossible with binary heaps)
• merge: given two priority queues, make one priority queue
• Insert & deleteMin defined in terms of merge

Aside: How might you merge binary heaps:
• If one heap is much smaller than the other?
• If both are about the same size?

6/29/2022 66


