
6/29/22

1

Priority Queue ADT

• Assume each item has a “priority”
• The lesser item is the one with the
greater priority

• So “priority 1” is more important than
“priority 4”

• Just a convention, could also do a
maximum priority

6/29/2022 5

Priority Queue ADT

State:
• Set of comparable elements

• Order based on “priority”
Operations:
• insert(element)
• deleteMin() – returns the

element with the smallest
priority, removes it from the
collection

• findMin()

insert deleteMin

6 2
15 23

12 18
45 3 7

5

6/29/2022

insert deleteMin

Unsorted Array

Unsorted Linked-List

Sorted Circular Array

Sorted Linked-List

Binary Search Tree (BST)

Preliminary Implementations of Priority Queue ADT

Notes: Worst case, Assume arrays have enough space
9

9

6/29/2022

A

E

B

D F

C

G

IH

LJ MK N

Tree T

Q: Some More Tree Terminology
depth(B):
height(G):

height(T):

degree(B):
branching factor(T):

15

15

Now Formalizing: Binary Min-Heap Datastructure

2513

8020

30

856040

8020

10

700 50

99

A Heap Not a Heap

6/29/2022

More commonly known as a binary heap or simply a heap
• Structure Property:

A complete [binary] tree
• Heap-Order Property:

Every non-root node has a priority value larger than (or possibly
equal to) the priority of its parent

22

22

6/29/22

2

Array Representation of a Binary Heap

From node i:
left child:
right child:
parent:

• We skip index 0 to make the math simpler
• Actually, it can be a good place to store the current size of

the heap

GED

CB

A

J KH I

F

L

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

6/29/2022

Note: Exercises and P2 start counting from 0

36

36

Example

1. insert: 16, 32, 4, 57, 80, 43, 2
2. deleteMin

6/29/2022

0 1 2 3 4 5 6 7

Note: Exercises and P2 start counting from 0

41

41

Floyd’s buildHeap Method

percolateDown, bottom-up:
• Leaves are already in heap order
• Work up toward the root one level at a time

6/29/2022

Note: Exercises and P2 start counting from 0

void buildHeap() {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

51

51

