
Announcements

• EX02 due Friday night
• P1 Checkpoint 1 due Tuesday
• Fill out BOTH checkpoint form AND gradescope

6/24/2022 40

A word on checkpoints and projects

6/24/2022 41

• Checkpoints are (somewhat) lenient
• Don’t expend all your energy staying up late if you can’t find the bug
• That being said, a strong signal that you are behind and need to spend

extra time to catch up
• Stay on top of things! Easier to catch the train then to catch it after it leaves

• Use the Ed board!
• If possible, make questions public (can make anonymous)

• Read Javadoc
• Read the comments in the repository!
• IntelliJ has functionality to jump to the reference (the interface,

implementation of method, etc. Super helpful!)

Git good at git

• Git is a really good resource
• https://learngitbranching.js.org/
• Make frequent commits and messages (helpful for debugging!)

6/24/2022 42

https://learngitbranching.js.org/

Pair Programming

• Divide & Conquer
• Boo :(
• Good for algorithms, not so much

for coding. Easy to miss subtle
bugs… doubling your mistakes!

• Pair Programming
• Yay :)
• You are responsible for knowing

your code!

6/24/2022 43

Today

• Big-Oh Definition
• And other friends

• Proofs
• Amortization

6/24/2022 44

Recap:

1. Look at code and get a function
of how long it runs based on
input size
• Heuristic: counting operations!
• Too detailed, so… step 2…

2. Group it into a Big Oh set of
functions
• asymptotic behavior
• Informally: “Drop” coefficients, lower-

order terms
• Formally: Find c and n0

6/24/2022 45

3n + 4
100n + 30 logn

O(1) O(n) O(n2)

for (i=0; i<n;i++){
…

}

What you can drop

• Eliminate coefficients because we don’t have units anyway
• 3n2 versus 5n2 doesn’t mean anything when we cannot count operations very

accurately

• Eliminate low-order terms because they have vanishingly small impact
as n grows

• Do NOT ignore constants that are not multipliers
• n3 is not O(n2)
• 3n is not O(2n)

(This all follows from the formal definition) (We can prove it!)

6/24/2022 46

Big Oh: Common Categories

From fastest to slowest
O(1) constant (same as O(k) for constant k)
O(log n) logarithmic
O(n) linear
O(n log n) “n log n”
O(n2) quadratic
O(n3) cubic
O(nk) polynomial (where is k is any constant > 1)
O(kn) exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it means
“grows at rate proportional to kn for some k>1”

6/24/2022 47

Note: Don’t write O(5n)
instead of O(n) – same thing!
It’s like writing 6/2 instead of
3. Looks weird

Big Oh: Common Categories

6/24/2022 48

Big Oh: Common Categories

6/24/2022 49

6/24/2022

pollev.com/artliu

True or false?
1. 4+3n is in O(n)
2. n+2logn is in O(logn)
3. logn+2 is in O(1)
4. n50 is in O(1.1n)

Notes:
• Do NOT ignore constants that are not multipliers:

• n3 is O(n2) : FALSE
• 3n is O(2n) : FALSE

• When in doubt, refer to the definition

50

More asymptotic analysis
Upper bound: O(f(n))

g(n) is in O(f(n)) if there exist constants c and n0 such that
g(n) £ c f(n) for all n ³ n0

Lower bound: W(f(n))
g(n) is in W(f(n)) if there exist constants c and n0 such that
g(n) ³ c f(n) for all n ³ n0

Tight bound: q(f(n))
g(n) is in q(f(n)) if it is in O(f(n)) and it is in W(f(n))

6/24/2022 52

Regarding use of terms

A common error is to say O(f(n)) when you mean q(f(n))
• People often say O() to mean a tight bound
• Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only

conveys the upper-bound
• Since f(n)=n is also O(n5), it’s tempting to say “this algorithm is exactly

O(n)”
• Somewhat incomplete; instead say it is q(n)
• That means that it is not, for example O(log n)

Less common notation:
• “little-oh”: like “big-Oh” but strictly less than

• Example: sum is o(n2) but not o(n)
• “little-omega”: like “big-Omega” but strictly greater than

• Example: sum is w(log n) but not w(n)

6/24/2022 53

(Previously) Formally Big-Oh

Note: n0 ³ 1 (and a natural number) and c > 0

Example: Let g(n) = 3n + 4 and f(n) = n
c = 4 and n0 = 5 is one possibility

6/24/2022

Definition: g(n) is in O(f(n)) iff there exist
positive constants c and n0 such that

g(n) £ c f(n) for all n ³ n0

g(n)

4 * f(n)

54

(NOW) Formally Big-Omega

Note: n0 ³ 1 (and a natural number) and c > 0

Example: Let g(n) = 3n + 4 and f(n) = n
c = 1 and n0 = 1 is one possibility

6/24/2022

Definition: g(n) is in W(f(n)) iff there exist
positive constants c and n0 such that

g(n) ³ c f(n) for all n ³ n0

g(n)

1 * f(n)

55

Now red is on bottom!

Formally Big-Theta

6/24/2022

Definition: g(n) is in q(f(n)) iff g(n) is in
O(f(n)) and it is in W(f(n))
Equivalently: iff there exist positive constants
c and n0 such that
c1 f(n) £ g(n) £ c2 f(n) for all n ³ n0

g(n) = 3n + 4

W(n)

56

O(n)

Notice: c (and n0) constants
can be different for proving
Oh and Omega

Another example of Big Omega

Can we pick c >= 0.5?
• https://www.desmos.com/calculator/kmlqfe0lie

6/24/2022 57

g(n) = max(1, 0.5n2 – 4n – 10)f(n) = n2

https://www.desmos.com/calculator/kmlqfe0lie

Big-O, Big-Theta, Big-Omega Relationships

If a function is in Big-Theta, what does it mean for its membership in
Big-O and Big-Omega? Vice versa?

6/24/2022 58

Mystery
Function

Big-O Big-Theta Big-Omega

O(N4) Ω(N4)

Θ(N3)

O(N)

Ω(N2)

Big-O, Big-Theta, Big-Omega Relationships

If a function is in Big-Theta, what does it mean for its membership in
Big-O and Big-Omega? Vice versa?

6/24/2022 59

Mystery
Function

Big-O Big-Theta Big-Omega

O(N4) Θ(N4) Ω(N4)

O(N3) Θ(N3) Ω(N3)

O(N) ?? ??, but cannot be Ω(N2)

??, but cannot be O(N) ?? Ω(N2)

Theta, Oh, Omega != Worst-Case, Best-Case

• These are independent!
• We can analyze for both best-case and worst-case for all three

6/24/2022 60

Example: what is the asymptotic analysis for Omega and Theta
Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

Best case: 6 “ish” operations = O(1)

Worst case: 5 “ish” * (arr.length) = O(N)

When are Oh and Omega (and theta) different?

• When doing worst-case analysis on code, tight Oh and tight Omega
are often the same. When are they different?

6/24/2022 61

O

Ω
Θ

// toggle function, note we cannot just
// analyze slower branch
if (n % 5 == 0) {
// linear work

} else {
// constant work

}

n

time

Today

• Big-Oh Definition
• Proofs
• Amortization

6/24/2022 62

Proof Mistake: Backwards Reasoning

• Careful to not assume something is true and work backwards
• Backwards reasoning only shows “consistency” NOT “truth”

• We need to start with something true and work towards the
statement that we want to show is true
• The last statement should be our claim!

Example | Claim: Show that 4 ≥ 5

6/24/2022 63

Big-Oh Proofs

There is likely some “scratch work” – the insight isn’t explained in
the final proof
• You just say “consider”

But don’t try to skip the scratch work when drafting your big-O
proofs!
• But it won’t necessarily appear in your final version

6/24/2022 64

Example

Let’s show: 10n2 + 15n is in O(n2)

6/24/2022 65

Example

Let’s show: 10n2 + 15n is in O(n2)

Proof:
Let c = 25 and n0=1
10n2 + 15n ≤ 10n2 + 15n2 since n≥1

≤ 25n2 addition

Which is exactly what we wanted to show from the definition of Big-
Oh.

6/24/2022 66

COUNTER Example

Let’s show: 10n2 + 15n is in O(n2)
BAD:
10n2 + 15n ≤ 25n2

15n ≤ 15n2 subtract 10n^2
n ≤ n2 divide by 15
1 ≤ n divide by n, tada (WRONG)

So, we can choose c = 25 and n0 = 1 and thus we have shown it is in
O(n2)
AGAIN, START WITH TRUE STATEMENT and END AT OUR GOAL CLAIM!

6/24/2022 67

Proving NOT in Big Oh

• Prove the negation is true
• Prove by contradiction
• Assume true, prove impossible

6/24/2022 68

Negating Big-Oh

6/24/2022 69

Definition: g(n) is in O(f(n)) iff there
exist positive constants c and n0 such
that

g(n) £ c f(n) for all n ³ n0

∃!,#!∀#$#! 𝑔 𝑛 ≤ 𝑐 ⋅ 𝑓(𝑛)

Negating Big-Oh

6/24/2022 70

Definition: g(n) is in O(f(n)) iff there
exist positive constants c and n0 such
that

g(n) £ c f(n) for all n ³ n0

∃!,#!∀#$#! 𝑔 𝑛 ≤ 𝑐 ⋅ 𝑓(𝑛) ∀!,#!∃#$#! 𝑔 𝑛 > 𝑐 ⋅ 𝑓(𝑛)
For any c or n0 that you pick, there
is a valid n where our function g(n)
exceeds the Big Oh function f(n)

Proving NOT in Big Oh Example: Prove Negation
Let’s show: 10n2 is NOT O(n)

6/24/2022 71

Not in Big OH:
∀!,#!∃#$#! 𝑔 𝑛 > 𝑐 ⋅ 𝑓(𝑛)

For any c or n0 that you pick, there
is a valid n where our function g(n)
exceeds the Big Oh function f(n)

Proving NOT in Big Oh Example: Prove Negation
Let’s show: 10n2 is NOT O(n)
Scratch work:
Need to find an n
10n2 > cn
10n > c

n > c/10

Proof:
Let n = max(c/10+1, n0)
n > c/10 from def

10n > c math
10n2 > cn multiply both sides by n (positive)
Which is exactly the inequality that we wanted to show. Since c and n0 are arbitrary, we
have shown this for all c and n0 and shown that it is not in Big Oh of O(n).

6/24/2022 72

Not in Big OH:
∀!,#!∃#$#! 𝑔 𝑛 > 𝑐 ⋅ 𝑓(𝑛)

For any c or n0 that you pick, there
is a valid n where our function g(n)
exceeds the Big Oh function f(n)

Proving NOT in Big Oh Example: Contradiction

Show: 10n2 is NOT O(n)
For sake of contradiction, assume that 10n2 is O(n)
10n2 ≤ cn for some c and all n ³ n0 (definition)
10n ≤ c divide by n (positive)
n ≤ c/10 divide by 10

But this is true for all n ³ n0 so n = max(c/10+1, n0)
contradicts the last statement. Since c and n0 are arbitrary, and by
contradiction we have shown that 10n2 is NOT O(n)

6/24/2022 73

Today

• Big-Oh Definition
• Proofs
• Amortization

6/24/2022 74

Amortization

How much does housing cost per day in Seattle?
Well, it depends on the day.

The day rent is due, it’s $1200.
Other days of the month, it’s free.

6/24/2022 75

Amortization

Amortization is an accounting trick. It’s a way to reflect the fact that
the “first of the month” is really responsible for the other days of the
week, and each day should be assigned it’s “fair share.”

6/24/2022 76

Amortization

Amortized:
It costs $1200/month, and
we pay one day of the 30 in a
month

Cost per day is 1200/30 = 40

“What does my daily pay need
to be to afford housing?”

6/24/2022 77

Un-amortized:
On the first it costs $1200
Every other day, it costs $0

“How much do I need to keep
in my bank account, so it
doesn’t get overdrawn?”

Array Insertion Example

What’s the worst case for insert into an array-based queue?
• O(n) when we need to resize, O(1) otherwise

Is O(n) a good description of the worst-case behavior?

6/24/2022 78

Amortization

Amortized:
It takes O(n) time to resize
once, after n-1 calls that take
O(1) time

Cost per operation is
! " # "$% !(%)

"
= 𝑂(1)

“What will happen when I do
many insertions in a row?”

6/24/2022 79

Un-amortized:
The resize takes O(n) time.
That’s the worst case that
could happen.

”How long might one (unlucky)
user need to wait on a single
insertion?”

Why double size?

The most common strategy for increasing array size is doubling. Why not just
increase the size by 10,000 each time we fill up?
Let’s say we did n insertions:
Costs of the unlucky insertions:

Costs of the other insertions:

Amortized insert cost:

6/24/2022 80

Why double size?

The most common strategy for increasing array size is doubling. Why not just
increase the size by 10,000 each time we fill up?
Let’s say we did n insertions:
Costs of the unlucky insertions:

%
!"#

$/&#,###

10,000𝑖 ≈ 10,000 ⋅
𝑛(

10,000(= 𝑂(𝑛()

Costs of the other insertions:
O(1) * n = O(n)

Amortized insert cost:

𝑂
𝑛(+ 𝑛
𝑛 = 𝑂(𝑛)

6/24/2022 81

Way worse than O(1)
with doubling!

Notes on Amortization

• Depends on the question you are asking
• Can customize your “rent pay-day” algorithm to the use-case
• Pay all on one day?
• Pay in 3 easy payments of 99.99?

• See Weiss chapter 11

6/24/2022 82

What we are (often) analyzing in 332

• The most common thing to do is give an O or q bound
to the worst-case running time of an algorithm

• Example: True statements about binary-search
algorithm
• Common: q(log n) running-time in the worst-case
• Less common: q(1) in the best-case (item is in the middle)
• Less common: Algorithm is W(log log n) in the worst-

case (it is not really, really, really fast asymptotically)
• Less common (but very good to know): the find-in-sorted-

array problem is W(log n) in the worst-case
• No algorithm can do better (without parallelism)

6/24/2022 83

Problem vs. Algorithm Analysis

A problem cannot be O(f(n)) since you can always find a slower
algorithm, so instead you can say there exists an algorithm that
solves the problem in O(f(n))

A problem can be W(f(n)) which means that we cannot find an
algorithm that solves the problem any faster!

6/24/2022 84

Other things to analyze

• Space instead of time
• Remember we can often use space to gain time

• Average case
• Sometimes only if you assume something about the distribution of inputs

• See CSE312 and STAT391
• Sometimes uses randomization in the algorithm

• Will see an example with sorting; also see CSE312

• Sometimes an amortized guarantee

6/24/2022 85

6/24/2022

pollev.com/artliu

Sample Exam Questions:
Assume domain and co-domain of all functions are the natural numbers

(1, 2, 3…)
Decide: Always True Sometimes True Never True
1. f(n) is in O(f(n)2)
2. f(n) is in Θ(f(n))
3. f(n)+g(n)is in Θ(max(f(n), g(n))
4. f(n) * n is in O(f(n)2)

86

6/24/2022

1. f(n) is in O(f(n)2) AT ST NT

2. f(n) is in Θ(f(n)) AT ST NT

3. f(n)+g(n)is in Θ(max(f(n), g(n)) AT ST NT

4. f(n) * n is in O(f(n)2) AT ST NT

87

Summary

Analysis can be about:

• The problem or the algorithm (usually algorithm)

• Time or space (usually time)

• Or power or dollars or …

• Best-, worst-, or average-case (usually worst)

• Upper-, lower-, or tight-bound (usually upper or tight)

• Amortized or un-amortized

6/24/2022 88

Big-Oh Caveats

• Asymptotic complexity (Big-Oh) focuses on behavior for large n and
is independent of any computer / coding trick
• But you can “abuse” it to be misled about trade-offs
• Example: n1/10 vs. log n

• Asymptotically n1/10 grows more quickly
• But the “cross-over” point is around 5 * 1017
• So if you have input size less than 258, prefer n1/10

• Comparing O() for small n values can be misleading
• Quicksort: O(nlogn) (expected)
• Insertion Sort: O(n2) (expected)
• Yet in reality Insertion Sort is faster for small n’s
• We’ll learn about these sorts later

6/24/2022 89

Addendum: Timing vs. Big-Oh?

• At the core of CS is a backbone of theory & mathematics
• Examine the algorithm itself, mathematically, not the implementation
• Reason about performance as a function of n
• Be able to mathematically prove things about performance

• Yet, timing has its place
• In the real world, we do want to know whether implementation A runs

faster than implementation B on data set C
• Ex: Benchmarking graphics cards

• Evaluating an algorithm? Use asymptotic analysis
• Evaluating an implementation of hardware/software? Timing can

be useful

6/24/2022 90

