Big Oh: Common Categories		
From fastest to slowest		
O(1)	constant (S	
$O(\log n)$	logarithmic	
O(n)	linear	Note: Don't write O(5n)
$O(n \log n)$	" $\mathrm{log} n$ "	It's like writing 6/2 instead of
$O\left(n^{2}\right)$	quadratic	3. Looks weird
$O\left(n^{3}\right)$	cubic	
$O\left(n^{k}\right)$	polynomial	1)
$O\left(k^{n}\right)$	exponentia	
Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^{n} for some $k>1$ "		
6/24/2022		47

47

More asymptotic analysis

Upper bound: $O(f(n))$
$g(n)$ is in $O(f(n))$ if there exist constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$

Lower bound: $\Omega(f(n))$
$g(n)$ is in $\Omega(f(n))$ if there exist constants c and n_{0} such that $g(n) \geq c f(n)$ for all $n \geq n_{0}$

Tight bound: $\theta(f(n))$
$g(n)$ is in $\theta(f(n))$ if it is in $O(f(n))$ and it is in $\Omega(f(n))$
6/24/2022
52

Big-O, Big-Theta, Big-Omega Relationships

If a function is in Big-Theta, what does it mean for its membership in Big-O and Big-Omega? Vice versa?

Mystery Function	Big-O	Big-Theta	Big-Omega
	$\mathrm{O}\left(\mathrm{N}^{4}\right)$		$\Omega\left(\mathrm{N}^{4}\right)$
		$\Theta\left(\mathrm{N}^{3}\right)$	
	$\mathrm{O}(\mathrm{N})$		
			$\Omega\left(\mathrm{N}^{2}\right)$

Example

Let's show: $10 n^{2}+15 n$ is in $O\left(n^{2}\right)$
${ }_{6}{ }^{6}$
65

71

Why double size?

The most common strategy for increasing array size is doubling. Why not just increase the size by 10,000 each time we fill up?
Let's say we did n insertions:
Costs of the unlucky insertions:

Costs of the other insertions:

Amortized insert cost:

6/24/2022
${ }^{80}$
80

1. $f(n)$ is in $O\left(f(n)^{2}\right)$	AT	ST	NT
2. $f(n)$ is in $\Theta(f(n))$	AT	ST	NT
3. $f(n)+g(n)$ is in $\Theta(\max (f(n), g(n))$	AT	ST	NT
4. $f(n) * n$ is in $O\left(f(n)^{2}\right)$	AT	ST	NT

87

