
CSE 332: Data Structures & Parallelism
Lecture 2: Algorithm Analysis

Arthur Liu
Summer 2022

6/24/2022 1

Announcements

• ”About you” survey! (See Ed)
• EX01
• Resubmit as many times before deadline!
• No late days!!
• Due Sunday night

• Post-lecture PollEV make-up (must submit before next lecture)
• P1 Released
• If you did not fill out partner form, fill it out ASAP

• EX02 releasing later today

6/24/2022 2

Today – Algorithm Analysis

• What do we care about?
• How to compare two algorithms
• Analyzing Code
• Asymptotic Analysis
• Big-Oh Definition

6/24/2022 3

What do we care about?

• Correctness:
• Does the algorithm do what is intended

• Performance:
• Speed time complexity
• Memory space complexity

• Why analyze?
• To make good design decisions
• Enable you to look at an algorithm (or code) and identify the bottlenecks,

etc.

6/24/2022 4

Q: How should we compare two algorithms?

I have some problem I need solved.

I ask Dara and Hans. They both have different ideas for how to solve
the problem. How do we know which is better?

Easy. Have them both write the code and run it and see which is
faster.

THIS IS A TERRIBLE IDEA

6/24/2022 5

A: How should we compare two algorithms?

• Uh, why NOT just run the program and time it??
• Too much variability, not reliable or portable:

• Hardware: processor(s), memory, etc.
• OS, Java version, libraries, drivers
• Other programs running
• Implementation dependent

• Choice of input (dataset)
• Testing (inexhaustive) may miss worst-case input
• Timing does not explain relative timing among inputs (what happens

when n doubles in size)

• Often want to evaluate an algorithm, not an
implementation
• Even before creating the implementation (“coding it up”)

6/24/2022 6

A better strategy?

What we want:
Answer is independent of CPU speed, programming language, coding
tricks, etc.

Large inputs (n) because probably any algorithm is “plenty good” for small
inputs (if n is 10, probably anything is fast enough)

Answer is general and rigorous, complementary to “coding it up and
timing it on some test cases”
• Can do analysis before coding!

6/24/2022 8

Analyzing code (“worst case”)… let’s count!

Assume basic operations take “some amount of” constant time
• Arithmetic
• Assignment
• Access one Java field or array index
• Etc.

This is an approximation of reality: a very useful “lie”

Consecutive statements Sum of time of each statement
Loops Num iterations * time for loop body
Conditionals Time of condition plus time of

slower branch
Function Calls Time of function’s body
Recursion Solve recurrence equation

6/24/2022 9

Examples
b = b + 5
c = b / a
b = c + 100

for (i = 0; i < n; i++) {
sum++;

}

if (j < 5) {
sum++;

} else {
for (i = 0; i < n; i++) {
sum++;

}
}

6/24/2022 10

6/24/2022

pollev.com/artliu

int coolFunction(int n, int sum) {

int i, j;
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++)

sum++;
}

}
print "This program is great!”

for (i = 0; i < n; i++) {
sum++;

}
return sum

}

What is the number of operations in this code? What is the big Oh?

12

Examples
b = b + 5
c = b / a
b = c + 100

for (i = 0; i < n; i++) {
sum++;

}

if (j < 5) {
sum++;

} else {
for (i = 0; i < n; i++) {
sum++;

}
}

6/24/2022 13

10,000,000

Using Summations for Loops

for (i = 0; i < n; i++) {

sum++;

}

6/24/2022 14

When math is helpful

for (i = 0; i < n; i++) {

for (j = 0; j < i; j++) {

sum++

}

}

6/24/2022 15

Complexity Cases

We’ll start by focusing on two cases:
• Worst-case complexity: max # steps algorithm takes on “most

challenging” input of size N
• Best-case complexity: min # steps algorithm takes on “easiest”

input of size N
What is the dataset like? What are the best/worst paths through our code?

6/24/2022

Incorrect to say: Best case is when N = 0

Correct to say: Best case is...
…when data is sorted
…our algorithm gets lucky

16

Other Complexity Cases

Average-case complexity: what does “average” case even mean?
What is an “average” dataset? Depends on your scenario

Amortized analysis: we’ll talk about this one later in this course.

6/24/2022 17

Example

6/24/2022

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

???
}

18

Linear search – Best Case & Worst Case

6/24/2022

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

Best case:

Worst case:

19

Linear search – Best Case & Worst Case

6/24/2022

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

Best case: 6 “ish” operations = O(1)

Worst case: 5 “ish” * (arr.length) = O(N)

AGAIN, best case / worst case is
INDEPENDENT of N (size of dataset)

20

Remember a faster search algorithm?

6/24/2022 21

Remember a faster search algorithm?

Worst Cases:
Binary Search – O(logn)
Linear Search – O(n)

6/24/2022 22

Ignoring Constant Factors

• So binary search is O(log n) and linear is O(n)
• But which will actually be faster?
• Depending on constant factors and size of n, in a particular situation, linear

search could be faster….
• How many assembly instructions, assignments, additions, etc. for each n

• And could depend on size of n

• But there exists some n0 such that for all n > n0 binary search “wins”

• Let’s play with a couple plots to get some intuition…

6/24/2022 23

Example
Let’s “help” linear search

• Run it on a computer 100x as fast
• Use a new compiler/language that is 3x as fast
• Be a clever programmer to eliminate half the work

• Note: 600x is still helpful for problems! (esp. when no better algorithm)

6/24/2022

600x speedup!

24

Logarithms and Exponents

Definition: log2 x = y if x = 2y
Logarithms grow as slowly as exponents grow quickly

So, log2 1,000,000 = “a little under 20”
Since so much is binary in CS, log almost always means log2

6/24/2022 25

Log base doesn’t matter much

“Any base B log is equivalent to base 2 log within a constant factor”
• And we are about to stop worrying about constant factors!
• In particular, log2 x = 3.22 log10 x
• In general, we can convert log bases via a constant multiplier
• Say, to convert from base B to base A:

logB x = (logA x) / (logA B)

6/24/2022 26

Review: Properties of logarithms

• log(A*B) = log A + log B
• So log(Nk)= k log N

• log(A/B) = log A – log B

• log2 2x = x

6/24/2022 27

Other functions with log

• log(log x) is written log log x
• Grows as slowly as 22 grows fast
• Ex: log log 4billion ~ log log 232 = log 32 = 5

• (log x)(log x) is written log2x
• It is greater than log x for all x > 2

NOT THE SAME

6/24/2022 28

x

Today

• What do we care about?
• How to compare two algorithms
• Analyzing Code
• Asymptotic Analysis
• Big-Oh Definition

6/24/2022 29

Asymptotic Analysis

About to show formal definition, which amounts to saying:
1. Eliminate low-order terms
2. Eliminate constant coefficients

Examples:
• 4n + 5
• 0.5n log n + 2n + 7
• n3 + 2n + 3n
• n log (10n2)

6/24/2022 30

Big-Oh relates functions

We use O on a function f(n) to mean the set of functions with asymptotic
behavior less than or equal to f(n)

So (3n2+17) is in O(n2)
• 3n2+17 and n2 have the same asymptotic behavior

Less ideal:
Confusingly, we also say/write:

• (3n2+17) is O(n2)
• (3n2+17) = O(n2)

But we would never say O(n2) = (3n2+17)

6/24/2022 31

Formally Big-Oh

Note: n0 ³ 1 (and a natural number) and c > 0

6/24/2022

Definition: g(n) is in O(f(n)) iff there exist
positive constants c and n0 such that

g(n) £ c f(n) for all n ³ n0

32

Formally Big-Oh

Note: n0 ³ 1 (and a natural number) and c > 0

Example: Let g(n) = 3n + 4 and f(n) = n
c = 4 and n0 = 5 is one possibility

6/24/2022

Definition: g(n) is in O(f(n)) iff there exist
positive constants c and n0 such that

g(n) £ c f(n) for all n ³ n0

g(n)

4 * f(n)

33

Formally Big-Oh

Note: n0 ³ 1 (and a natural number) and c > 0

Example: Let g(n) = 3n + 4 and f(n) = n
c = 4 and n0 = 5 is one possibility

6/24/2022

Definition: g(n) is in O(f(n)) iff there exist
positive constants c and n0 such that

g(n) £ c f(n) for all n ³ n0

g(n)

4 * f(n)

This is “less than or equal to”
• So 3n + 4 is also O(n5) and O(2n) etc.

34

Why n0?

n0 gives time for the higher-order terms to cover the lower-order ones

Example:
g(n) = 2n
f(n) = n2

2n is in O(n2), but 2n is only smaller when
n exceeds 2

6/24/2022 35

Why c?

• The constant multiplier (called c) allows functions with the same
asymptotic behavior to be grouped together
• Pick a c large enough to “cover the dropped constant factors”

g(n) = 7n+5
f(n) = n

It’s true:
g(n) is in O(f(n))

• There is no positive n0 such that g(n) ≤ f(n) for all n ≥ n0

6/24/2022 36

Why c?
g(n) = 7n+5
f(n) = n

• The ‘c’ in the definition fixes this! for that:
g(n) £ c f(n) for all n ³ n0

• To show g(n) is in O(f(n)), have c = 12, n0 = 1

6/24/2022

f(n) = 12n

f(n) = n

37

Working through an example

To show g(n) is in O(f(n)), pick a c large enough to “cover the
constant factors” and n0 large enough to “cover the lower-order
terms”
• Example: Let g(n) = 4n2 + 3n + 4 and f(n) = n3

6/24/2022 38

Big Oh: Common Categories

From fastest to slowest
O(1) constant (same as O(k) for constant k)
O(log n) logarithmic
O(n) linear
O(n log n) “n log n”
O(n2) quadratic
O(n3) cubic
O(nk) polynomial (where is k is any constant > 1)
O(kn) exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it means
“grows at rate proportional to kn for some k>1”

6/24/2022 39

Note: Don’t write O(5n) instead of O(n) – same thing!
It’s like writing 6/2 instead of 3. Looks weird

Big Oh: Common Categories

6/24/2022 40

Big Oh: Common Categories

6/24/2022 41

6/24/2022

pollev.com/artliu

True or false? (If true, what is a possible c and n0)

1. 4+3n is in O(n)
2. n+2logn is in O(logn)
3. logn+2 is in O(1)
4. n50 is in O(1.1n)

Notes:
• Do NOT ignore constants that are not multipliers:

• n3 is O(n2) : FALSE
• 3n is O(2n) : FALSE

• When in doubt, refer to the definition

42

What you can drop

• Eliminate coefficients because we don’t have units anyway
• 3n2 versus 5n2 doesn’t mean anything when we cannot count operations very

accurately

• Eliminate low-order terms because they have vanishingly small impact
as n grows

• Do NOT ignore constants that are not multipliers
• n3 is not O(n2)
• 3n is not O(2n)

(This all follows from the formal definition) (We can prove it!)

6/24/2022 44

More asymptotic analysis (more detail next time)
Upper bound: O(f(n))

g(n) is in O(f(n)) if there exist constants c and n0 such that
g(n) £ c f(n) for all n ³ n0

Lower bound: W(f(n))
g(n) is in W(f(n)) if there exist constants c and n0 such that
g(n) ³ c f(n) for all n ³ n0

Tight bound: q(f(n))
g(n) is in q(f(n)) if it is in O(f(n)) and it is in W(f(n))

6/24/2022 45

Next

• More asymptotic analysis (theta, omega, little-oh)
• Mentioning Big-Oh proofs
• Heaps

• EX02 released after lecture

6/24/2022 46

