CSE 332: Data Structures \& Parallelism Lecture 2: Algorithm Analysis

Arthur Liu

Summer 2022

Announcements

- "About you" survey! (See Ed)
- EX01
- Resubmit as many times before deadline!
- No late days!!
- Due Sunday night
- Post-lecture PollEV make-up (must submit before next lecture)
- P1 Released
- If you did not fill out partner form, fill it out ASAP
- EXO2 releasing later today

Today - Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing Code
- Asymptotic Analysis
- Big-Oh Definition

What do we care about?

- Correctness:
- Does the algorithm do what is intended
- Performance:
- Speed time complexity
- Memory space complexity
- Why analyze?
- To make good design decisions
- Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.

Q: How should we compare two algorithms?

I have some problem I need solved.

I ask Dara and Hans. They both have different ideas for how to solve the problem. How do we know which is better?

Easy. Have them both write the code and run it and see which is faster.

THIS IS A TERRIBLE IDEA

A: How should we compare two algorithms?

- Uh, why NOT just run the program and time it??
- Too much variability, not reliable or portable:
- Hardware: processor(s), memory, etc.
- OS, Java version, libraries, drivers
- Other programs running
- Implementation dependent
- Choice of input (dataset)
- Testing (inexhaustive) may miss worst-case input
- Timing does not explain relative timing among inputs (what happens when n doubles in size)
- Often want to evaluate an algorithm, not an implementation
- Even before creating the implementation ("coding it up")

A better strategy?

What we want:
Answer is independent of CPU speed, programming language, coding tricks, etc.

Large inputs (n) because probably any algorithm is "plenty good" for small inputs (if n is 10, probably anything is fast enough)

Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

- Can do analysis before coding!

Analyzing code ("worst case")... let's count!

Assume basic operations take "some amount of" constant time $A=B+C(i)$

- Arithmetic
- Assignment
- Access one Java field or array index
- Etc.

This is an approximation of reality: a very useful "lie"

Consecutive statements Sum of time of each statement

Loops
Conditionals

Function Calls
Recursion

Num iterations * time for loop body
Time of condition plus time of slower branch

Time of function's body

Solve recurrence equation

Examples

What is the number of operations in this code? What is the big Oh?

int i, j;
for (i $=0 ; i<n ; i++)$ \{
for $(j=0 ; j<n ; j++)$
sum++;
\}
print "This program is great!" < I 100
for (i $=0 ; i<n ; i++)$ \{
sum++;

Examples

$$
\begin{aligned}
& \mathrm{b}=\mathrm{b}+5 \\
& \mathrm{c}=\mathrm{b} / \mathrm{a} \\
& \mathrm{~b}=\mathrm{c}+100
\end{aligned}
$$

$$
\rightarrow O(1)
$$

```
if (j< < ) {
    sum++;
} else {
    for (i = 0; i < n; i++) {
        sum++;
    }
}
```

Using Summations for Loops

$$
\begin{aligned}
& \text { for (} \underline{i}^{\prime}=0 \text {; } i<n \text {; } i++ \text {) } \\
& \text { sum++; } \varsigma \text { inclusive } \\
& \text { \} } \\
& 1+\sum_{i=0}^{n-1} 5=1+\underbrace{5+5+5}_{n+\text { neo }} \ldots=1+5 n=0(n)
\end{aligned}
$$

When math is helpful

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \text { i } \\
& \text { for }\left(j=0 ;\left(j<i j^{j++}\right)\right. \\
& \quad \text { sum++ } \\
& { }^{\} \quad \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 5=\sum_{i=0}^{n-1} 5 i=5 \sum_{i=0}^{n-1} i}=5 \frac{n(n-1)}{2} \\
& \\
& =\frac{5 n^{2}}{2}-\frac{5 n}{2} \\
&
\end{aligned}
$$

Complexity Cases

scenanos

We'll start by focusing on two cases:

- Worst-ease complexity. max \# steps algorithm takes on "most challenging" input of size N
- Best-case complexity: min \# steps algorithm takes on "easiest" input of size N
What is the dataset like? What are the best/worst paths through our code?Incorrect to say: Best case is when $\mathrm{N}=0$
Correct to say: Best case is...
...when data is sorted
...our algorithm gets lucky

Other Complexity Cases

Average-case complexity: what does "average" case even mean?
What is an "average" dataset? Depends on your scenario

Amortized analysis: we'll talk about this one later in this course.

Example

2	3	5	16	37	50	73	75	126

Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array boolean find(int[]arr, int k)\{
???
\}

Linear search - Best Case \& Worst Case

(2)	3	5	16	37	50	73	75	(126)

Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) \{
for (int $i=0 ; i<$ arr.length $++i$) if(arr[i] ==k) return/true;
return false;
\}

$$
\begin{aligned}
& \text { Best case: } \operatorname{fin}(2)-6-O(1) \\
& \text { Worst case: } \\
& \begin{array}{l}
\sin (4), \sin (126) \\
1+5 \cdot n \rightarrow o(n) \\
2
\end{array}
\end{aligned}
$$

Linear search - Best Case \& Worst Case

2	3	5	16	37	50	73	75	126

Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array boolean find(int[]arr, int k) \{
for (int i=0; $i<a r r . l e n g t h ; ~++i)$ if(arr[i] == k)
return true;
return false;
\}

Best case: 6 "ish" operations $=0(1)$

Worst case: 5 "ish" * (arr.length) $=0(N)$

Remember a faster search algorithm?

Remember a faster search algorithm?

Worst Cases:
Binary Search - O(logn)
Linear Search - O(n)

Ignoring Constant Factors

- So binary search is $\mathrm{O}(\log \mathrm{n})$ and linear is $\mathrm{O}(\mathrm{n})$
- But which will actually be faster?
- Depending on constant factors and size of n , in a particular situation, linear search could be faster....
- How many assembly instructions, assignments, additions, etc. for each n
- And could depend on size of n
- But there exists some n_{0} such that for all $n>n_{0}$ binary search "wins"
- Let's play with a couple plots to get some intuition...

Example

Let's "help" linear search

- Run it on a computer 100x as fast
- Use a new compiler/language that is $3 x$ as fast
- Be a clever programmer to eliminate half the work

```
600x speedup!
```

- Note: 600x is still helpful for problems! (esp. when no better algorithm)

Logarithms and Exponents

Definition: $\log _{2} \mathbf{x}=\mathrm{y}$ if $\mathbf{x}=2^{\mathrm{y}}$
Logarithms grow as slowly as exponents grow quickly
So, $\log _{2} 1,000,000=$ "a little under 20"
Since so much is binary in CS, log almost always means log ${ }_{2}$)

Log base doesn't matter much

"Any base B log is equivalent to base $2 \log$ within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log _{2} x=3.22 \log (10) x$
- In general, we can convert log bases via a constant multiplier
- Say, to convert from base B to base A:

Review: Properties of logarithms

- $\log (\underline{A * B})=\log A+\log B$
- So $\frac{\log \left(N^{k}\right)}{T}=k \log N$
- $\log (A / B)=\log A-\log B$
- $\log _{2} 2^{\mathrm{x}}=\mathrm{x}$

Other functions with log

- $\log (\log x)$ is written $\log \log x$
- Grows as slowly as $2^{2^{x}}$ grows fast
- Ex: $\log \log 4$ billion $\sim \log \log 2^{32}=\log 32=5$
- $(\log x)(\log x)$ is written $\log ^{2} x$ $\log ^{3} x \quad(\log x)^{2}$
- It is greater than $\log x$ for all $x>2$

NOT THE SAME

Today

- What do we care about?
- How to compare two algorithms
- Analyzing Code
- Asymptotic Analysis
- Big-Oh Definition

Asymptotic Analysis

About to show formal definition, which amounts to saying:

1. Eliminate low-order terms
2. Eliminate constant coefficients

Examples:

- An + 5

- $0.5 n \log n+2 n+7 \quad n \lg n+n \quad 0(n \lg n)$
- $n^{3}+\underline{2}^{n}+3 n$
$O\left(2^{n}\right)$
- $n \log \left(10 n^{2}\right)$

$$
\begin{aligned}
n \lg \left(10 n^{2}\right) \rightarrow & n\left(\log 10+\log n^{2}\right) \\
& n \cdot 2 \cdot \lg n \neq 0(n \lg n)
\end{aligned}
$$

Big-Oh relates functions

We use O on a function $f(n)$ to mean the set of functions with asymptotic behavior less than or equal to $f(n)$

So $\left(3 n^{2}+17\right)$ is in $O\left(n^{2}\right)$

- $3 n^{2}+17$ and n^{2} have the same asymptotic behavior

Less ideal:
Confusingly, we also say/write:

- $\left(3 n^{2}+17\right)$ is $O\left(n^{2}\right)$
- $\left(3 n^{2}+17\right) \equiv O\left(n^{2}\right)$

But we would never say $O\left(n^{2}\right)=\left(3 n^{2}+17\right)$

Formally Big-Oh

Definition: $g(n)$ is in $O(f(n))$ iff there exist positive constants c and n_{0} such that
$g(n) \leq c f(n)$ for all $n \geq n_{0}$
Definition: $g(n)$ is in $O(f(n))$ iff there exist
positive constants c and n_{0} such that
$g(n) \leq c f(n)$ for all $n \geq n_{0}$

Note: $n_{0} \geq 1$ (and a natural number) and $c>0$

Formally Big-Oh

Definition: $g(n)$ is in $O(f(n))$ ff there exist positive constants c and n_{0} such that

$$
g(n) \leq c f(n) \text { for all } n \geq n_{0}
$$

Note: $n_{0} \geqq 1$ (and a natural number) and $c>0$
Example: Let $g(n)=3 n+4$ and $f(n)=n$

$$
\begin{array}{rlrl}
a=4 \text { and } n_{2} & =5 \text { is one possibility } & & \text { Try: } \\
3 n+4 & \leq 4 n & c \\
3 & \leq 4 & n_{0}= \\
19 & \leq 20 &
\end{array}
$$

Formally Big-Oh

Definition: $g(n)$ is in $0(f(n))$ iff there exist positive constants c and n_{0} such that
$g(n)\left(S c f(n)\right.$ for all $n \geq n_{0}$

Note: $n_{0} \geq 1$ (and a natural number) and $c>0$
Example: Let $g(n)=3 n+4$ and $f(n)=n$ $c=4$ and $n_{0}=5$ is one possibility

This is "less than or equal to"

- So $3 n+4$ is also $O\left(n^{5}\right)$ and $O\left(2^{n}\right)$ etc.

Why n_{0} ?

n_{0} gives time for the higher-order terms to cover the lower-order ones

Example:

$g(n)=2 n$
$\mathrm{f}(\mathrm{n})=\mathrm{n}^{2}$
$2 n$ is in $O\left(n^{2}\right)$, but $2 n$ is only smaller when n exceeds 2

Why c?

- The constant multiplier (called c) allows functions with the same asymptotic behavior to be grouped together
- Pick a c large enough to "cover the dropped constant factors"

$$
\left\{\begin{array}{l}
g(n)=7 n+5 \\
f(n)=n
\end{array}\right.
$$

It's true:
$g(n)$ is in $O(f(n))$

- There is no positive n_{0} such that $g(n) \leq f(n)$ for all $n \geq n_{0}$

Why c?

$$
\begin{aligned}
& g(n)=7 n+5 \\
& f(n)=n
\end{aligned}
$$

- The ' c ' in the definition fixes this! for that:

$$
g(n) \leq c f(n) \quad \text { for all } n \geq n_{0}
$$

- To show $g(n)$ is in $O(f(n))$, have $c=12, n_{0}=1$

Working through an example
To show $g(n)$ is in $O(f(n))$, pick a c large enough to "cover the constant factors" and n_{0} large enough to "cover the lower-order terms"

- Example: Let $g(n)=4 n^{2}+3 n+4$ and $f(n)=n^{3}$

$$
\begin{array}{r}
4 n^{2}+3 n+4 \leq 4 n^{3}+3 n^{3}+4 n^{3} \leq 11 \eta^{3} \leq c \cdot n^{3} \\
n \geqslant 1 \\
q_{0}=1 \\
n_{0}=11 \rightarrow 12 \\
n_{0}=2
\end{array}
$$

Big Oh: Common Categories

From fastest to slowest
$O(1) \quad$ constant (same as $O(k)$ for constant k)
$O(\log n)$ logarithmic
$O(n) \quad$ linear Note: Don't write $O(5 n)$ instead of $O(n)$ - same thing!
$O(n \log n) \quad " n \log n "$
It's like writing $6 / 2$ instead of 3 . Looks weird
$O\left(n^{2}\right) \quad q u a d r a t i c$
$O\left(n^{3}\right) \quad$ cubic
$O\left(n^{k}\right) \quad$ polynomial (where is k is any constant >1)
$O\left(k^{n}\right) \quad$ exponential (where k is any constant >1)
Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^{n} for some $k>1$ "

Big Oh: Common Categories

Big Oh: Common Categories

(11) Poll Everywhere

True or false? (If true, what is a possible c and n_{0})

1. $4+3 n$ is in $O(n)$
2. $n+2 \log n$ is in $O(\log n)$
3. $\log n+2$ is in $O(1)$
4. n^{50} is in $\mathrm{O}\left(1.1^{\mathrm{n}}\right)$

Notes:

- Do NOT ignore constants that are not multipliers:
- n^{3} is $0\left(\mathrm{n}^{2}\right)$: FALSE
- 3^{n} is $0\left(2^{n}\right)$: FALSE
- When in doubt, refer to the definition

What you can drop

- Eliminate coefficients because we don't have units anyway
- $3 n^{2}$ versus $5 n^{2}$ doesn't mean anything when we cannot count operations very accurately
- Eliminate low-order terms because they have vanishingly small impact as n grows
- Do NOT ignore constants that are not multipliers
- n^{3} is not $O\left(n^{2}\right)$
- 3^{n} is not $O\left(2^{n}\right)$
(This all follows from the formal definition) (We can prove it!)

More asymptotic analysis (more detail next time)

Upper bound: $O(f(n)$)
$g(n)$ is in $O(f(n))$ if there exist constants c and n_{0} such that

$$
g(n) \leq c f(n) \text { for all } n \geq n_{0}
$$

Lower bound: $\Omega(f(n))$

$$
\begin{aligned}
& g(n) \text { is in } \Omega(f(n)) \text { if there exist constants } c \text { and } n_{0} \text { such that } \\
& g(n) \geq c f(n) \text { for all } n \geq n_{0}
\end{aligned}
$$

Tight bound: $\theta(f(n))$
$g(n)$ is in $\theta(f(n))$ if it is in $O(f(n))$ and it is in $\Omega(f(n))$

Next

- More asymptotic analysis (theta, omega, little-oh)
- Mentioning Big-Oh proofs
- Heaps
- EXO2 released after lecture

