
CSE 332: Data Structures & Parallelism
Lecture 1: Intro, Stacks & Queues

Arthur Liu
Summer 2022

16/22/2022



Welcome!

We have 9 weeks to learn fundamental data structures and 
algorithms for organizing and processing information
• “Classic” data structures / algorithms and how to analyze 

rigorously their efficiency and when to use them
• Queues, dictionaries, graphs, sorting, etc.
• Parallelism and concurrency (!)

6/22/2022 2



Today

• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks

6/22/2022 3



CSE 332 Course Staff

Instructor:
Arthur Liu

Teaching Assistants:
• Nathan Akkaraphab
• Hans Easton
• Winston Jodjana

• Neel Jog
• Dara Stotland
• Thien Kim Tran

46/22/2022



Me

• BS/MS graduate
• 9+ quarters TA
• Previously: Amazon, Microsoft, Startup
• Meta
• Soccer, Triathlon

6/22/2022 5



Today

• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks

6/22/2022 6



Course Information

• Instructor: Arthur Liu, CSE210
• Office Hours: see course web page, and by appointment
• artliu@cs.washington.edu

• Course Web Page:
• cs.uw.edu/332

• Text (optional):
Data Structures & Algorithm Analysis in Java, (Mark 
Allen Weiss), 3rd edition, 2012
(2nd edition also o.k.)

6/22/2022 7



Communication

• Course email lists: 
cse332a_su22@uw
• You are already subscribed

• Ed Discussion board
• Your first stop for questions about course content & assignments
• Ed Announcement Emails - You must get and read 

announcements sent there
• Anonymous feedback link
• For good and bad: if you don’t tell us, we won’t know!

6/22/2022 8



Course Meetings

• Lecture
• Take notes, materials posted (sometimes afterwards)
• Ask questions, focus on key ideas (rarely coding details)
• Attend synchronously as much as possible and interact with peers!

• Section
• Practice problems!
• Answer Java/project/homework questions, etc.
• Occasionally may introduce new material
• An important part of the course (not optional)

• Office hours
• Use them: please visit us!

6/22/2022 9



Course Materials

• Lecture and section materials will be posted
• They are visual aids, so not always a complete description!
• If you have to miss, find out what you missed

• Textbook: Weiss 3rd Edition in Java
• Good read, but only responsible for lecture/section/hw topics
• 3rd edition improves on 2nd, but 2nd is fine

• Parallelism / concurrency topics in separate free resource 
designed for 332

6/22/2022 10



Course Work

• ~15 weekly individual homework exercises (25%)
• Programming Projects (37%)
• Use Java and IntelliJ, Gitlab
• Done in partners*, o.k. if partner is in other quiz section

*Can do individually, but projects designed for partners

• Midterm (15%) (Week 5 Monday 7/18)

• Final (20%) (last Thursday section 8/18 and Friday of quarter 8/19)

• Course-Wide Participation (3%)
• Many ways to earn credit here, relatively lenient on this

6/22/2022 11



Late Policy and Student Conduct

• Late Policy
• Exercises: No late submissions allowed
• Projects: 4 late day tokens for the entire quarter, max 2 per project

• Academic Conduct (see syllabus)
• In short: don’t attempt to gain credit for something you didn’t do and 

don’t help others to do so either
• This does not mean suffer in silence!

• Learn from course staff and peers, talk, share ideas; but don’t share or copy 
work that is supposed to be yours

• Extenuating Circumstances

6/22/2022 12



Who is your favorite superhero?

6/22/2022 13

pollev.com/artliu

• Make sure you are logged in with your uw netid account
• If you might have an issue with in-lecture polling, reach out to the 

instructor as soon as possible
• Only need to vote on 60% of questions to get full credit!
• 1.05 points for correct answer, 1 point otherwise

• If you are sick, stay home!



Homework for Today!!

1. Project #1: Fill out partner request survey by Thursday 6pm
• Partner Mixer Thursday 12-1 @ CSE2 271

2. Preliminary Survey: fill out by Friday night
3. Exercise #1: Due SUNDAY at 11:59pm

4. Make sure you are on Ed
5. Review Java & install Intellij
6. Reading (optional) in Weiss (see website)

6/22/2022 14

https://docs.google.com/forms/d/e/1FAIpQLSfQ2028nWroqqH8lx06RDNIIH4cQTsikyl3IbtqG932yS6wEQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeb2uIcX7WoX1oRgm4TKQsHHw3v4RHNhJyXY9-mq3CryAiuOw/viewform?usp=sf_link


Reading

• Reading in Weiss
• For this week:
• Weiss 3.1-3.7 – Lists, Stacks & Queues (Topic for Project #1)
• (Friday) Weiss 2.1-2.4 – Algorithm Analysis
• (Useful) Weiss 1.1-1.6 – Mathematics and Java (NOT covered 

in lecture, will use some of these baseline facts)

6/22/2022 15



Today

• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks

6/22/2022 16



Data Structures & Parallelism 

• About 70% of the course is a “classic data-structures course”
• Timeless, essential stuff
• Core data structures and algorithms that underlie most software
• How to analyze algorithms
• Implement them

• Plus a serious first treatment of programming with multiple threads
• For parallelism: Use multiple processors to finish sooner
• For concurrency: Correct access to shared resources
• Will make many connections to the classic material

6/22/2022 17



What 332 is about

• Deeply understand the basic structures used in software
• Understand the data structures and their trade-offs
• Rigorously analyze the algorithms that use them
• Learn how to pick “the right thing for the job”

• Experience the purposes and headaches of multithreading
• Practice design, analysis, and implementation
• The elegant interplay of “theory” and “engineering” at the core of 

computer science

6/22/2022 18



Goals

• You will understand:
• What the tools are for storing and processing common data types
• Which tools are appropriate for which need (read: tradeoffs)

• So that you will be able to:
• Make good design choices
• Justify and communicate your design decisions

6/22/2022 19



One view on this course

• This is the class where you being to think like a computer scientist
• You stop thinking in Java code
• You start thinking that this is a hashtable problem, a stack problem, etc.
• Feel more comfortable not having “right” answers

6/22/2022 20



Data Structures?

• “Clever” ways to organize information in order to enable efficient
computation over that information

6/22/2022 21



Example Datastructures and Their Trade-Offs

• LinkedList, ArrayList

6/22/2022 22



Trade-Offs

• A data structure strives to provide many useful, efficient operations
• But there are unavoidable trade-offs:
• Time vs. Space
• One operation more efficient if another less efficient
• Generality vs. Simplicity vs. Performance

• That is why there are many data structures; educated CSEers
internalize their main trade-offs and techniques
• Recognize and reason about logarithmic < linear < quadratic < exponential

6/22/2022 23



Getting Serious: Terminology

• Abstract Data Type (ADT)
• Mathematical description of a ”thing” 

with set of operations on that “thing”

• Data Structures
• A specific organization of data and family 

of algorithms for implementing an ADT

• Implementation of a data structure
• The actual code implementation in a 

specific language

6/22/2022 24

• Algorithm
• A high level, language-

independent description of a 
step-by-step process



Getting Serious: Terminology

• Abstract Data Type (ADT)
• Mathematical description of a ”thing” 

with set of operations on that “thing”

• Data Structures
• A specific organization of data and family 

of algorithms for implementing an ADT

• Implementation of a data structure
• The actual code implementation in a 

specific language

6/22/2022 25

• Algorithm
• A high level, language-

independent description of a 
step-by-step process

List

ArrayList, LinkedList

Your CSE143 code, 
Java Util Library

How to remove node,
How to resize



Getting Serious: Terminology

• Abstract Data Type (ADT)
• Mathematical description of a ”thing” 

with set of operations on that “thing”

• Data Structures
• A specific organization of data and family 

of algorithms for implementing an ADT

• Implementation of a data structure
• The actual code implementation in a 

specific language

6/22/2022 26

• Algorithm
• A high level, language-

independent description of a 
step-by-step process

Linear search
Binary search

0 2 4 5 6 9 21



Today

• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks

6/22/2022 27



Terminology Example: Stack and Queue ADT

6/22/2022 28

Stack ADT

State:
• Set of elements
Operations:
• push(element)
• pop() – returns the most 

recent element that was 
added to the stack

Queue ADT

State:
• Set of elements
Operations:
• enqueue(element)
• dequeue() – deletes and 

returns the element that has 
been in the queue the 
longest



Terminology Example: Stack and Queue ADT

6/22/2022 29

Stack ADT

State:
• Set of elements
Operations:
• push(element)
• pop() – returns the most 

recent element that was 
added to the stack



Why useful

The Stack ADT is a useful abstraction because:
• It arises all the time in programming (see Weiss for more)
• Recursive function calls
• Balancing symbols (parentheses)
• Evaluating postfix notation: 3 4 + 5 *
• Clever: Infix ((3 + 4) * 5) to postfix conversion (see Weiss)

• We can code up a reusable library
• We can communicate in high-level terms
• “Use a stack and push numbers, popping for operators…”
• Rather than, “create a linked list and add a node when…”

6/22/2022 30



Balancing Parenthesis

{([])}
(()()))

6/22/2022 31



Stack Datastructures

• Singly Linked List 
Implementation

6/22/2022 32

• Array Implementation

7 4 4 7

2size2size

front



Queue Datastructures

6/22/2022 33

Queue ADT

State:
• Set of elements
Operations:
• enqueue(element)
• dequeue() – deletes and 

returns the element that has 
been in the queue the 
longest



Array Queue Data Structure

• Idea:
• Enqueue by adding to back
• Dequeue by removing from index 0 and shifting elements down

• Dequeue inefficient :(

6/22/2022 34

a b c d e
Q: 0 size - 1

back



Circular Array Queue Data Structure

6/22/2022 35

b c d e f
Q: 0 size - 1

backfront

// Basic idea only!
enqueue(x) {
Q[back] = x;
back = (back + 1) % size 

}

// Basic idea only!
dequeue() {
x = Q[front];
front = (front + 1) % size;
return x;

}

• What if queue is empty?
• Enqueue?
• Dequeue?

• What if array is full?
• How to test for empty?
• What is the complexity of 

the operations?



Linked List Queue Data Structure

6/22/2022 36

b c d e f

front back

// Basic idea only!
enqueue(x) {
back.next = new Node(x);
back = back.next; 

}

// Basic idea only!
dequeue() {
x = front.item;
front = front.next;
return x;

}

• What if queue is empty?
• Enqueue?
• Dequeue?

• Can list be full?
• How to test for empty?

• What is the complexity of the 
operations?



What are advantages and disadvantages of using 
CircularArray vs. LinkedList datastructure to implement 
the Queue ADT?

6/22/2022 37

pollev.com/artliu

Array: Linked List:



Circular Array vs. Linked List

Array:
• May waste unneeded space or run out 

of space
• Space per element is excellent
• Operations very simple / fast

Operations not in Queue ADT, but also:
• Constant-time “access to kth element”
• For operation “insertAtPosition”, must 

shift all later elements

6/22/2022 38

Linked List:
• Always just enough space
• But more space per element
• Operations very simple / fast

Operations not in Queue ADT, but also:
• No constant-time “access to kth 

element”
• For operation “insertAtPosition”, must 

traverse all earlier elements



Homework for Today!!

1. Project #1: Fill out partner request survey by Thursday 6pm
• Partner Mixer Thursday 12-1 @ CSE2 271

2. Preliminary Survey: fill out by Friday night
3. Exercise #1: Due SUNDAY at 11:59pm

4. Make sure you are on Ed
5. Review Java & install Intellij
6. Reading (optional) in Weiss (see website)

6/22/2022 39

https://docs.google.com/forms/d/e/1FAIpQLSfQ2028nWroqqH8lx06RDNIIH4cQTsikyl3IbtqG932yS6wEQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeb2uIcX7WoX1oRgm4TKQsHHw3v4RHNhJyXY9-mq3CryAiuOw/viewform?usp=sf_link

