CSE 332 : 21AU Simulated Midterm

Instructions
* This is a simulated exam. It is designed to be done closed-book/closed-note, and with no access to electronic
devices.
e The allotted time is 50 minutes.
* Read directions carefully, especially for which problems require you to show work or provide an explanation.

* Don’t forget to answer the reflection questions after you finish the exam (you may spend as much time on
those as you wish).

* On a non-simulated exam, we can only give partial credit for work that you’ve written down.

* If you run out of room on a page, indicate that the answer continues use the back of that page. Try to avoid
writing on the very edges of the pages, as on non-simulated exams we scan your answers.

* The last two pages of the exam are a blank sheet for scratch work and a formula sheet.

Advice

* If you feel like you're stuck on a problem, you may want to skip it and come back at the end if you have time.
* Look at the question titles on the cover page to see if you want to start somewhere other than problem 1.
* We recommend ripping off the last two pages from the exam right away.

* Remember to take deep breaths.

Question Max points
1. Big-O 18
2. Code Analysis 16
3. 0,9, and O, oh, my! 12
4. Write a recurrence 9
5. Solve a recurrence 10
6. B-Tree 11
7. PIVOT! (AVL rotations) 6
8. Remove Many 6
9. Priority AVLs 12
Total 100

1. Big-O [18 points]

For each of the following operations or functions given below, give a simplified, tight big-O bound. This means
that, for example, O (2') or O (5n” + 7n + 3) are unlikely to get points. Unless otherwise specified, all logs are
base 2. Explanation or justification are not required.

For questions that ask for the running time of operations, assume the most efficient implementation of those data
structures is used.

For array-based structures (including hash tables), assume that you do not have to resize.

(a) Best case for insertion into a heap with n elements. (a)

(b) Worst case for removeMin from a heap with n® elements. b)

(c) Best case running time to find and remove an element from a BST

with n elements. ()
(d f(n) =log; (2") (d)
(e) Worst case for n insertions into an initially empty heap. (e)

T(n/2)+5 ifn>32

T(n) =
® T(n) {17 otherwise @
(g) Removing the first k& elements from an array-based queue

with n elements (assume that & is much less than n). (€3]
(h) Find the median element of an AVL tree

(assume that there are n elements in the AVL tree, and n is odd). (h)
(i) The average case for an insertion into a separate chaining hash table

where there are currently n = v/TableSize elements

(give your answer in terms of n, not A or TableSize). ()

2. Code Analysis [16 points]

Describe the worst-case running time for the following pseudocode functions in Big-O notation in terms of the
variable n. Your answer must be tight and simplified. You do not have to show work or justify your answers for
this problem.

(a) void sand(int n) {
for(int 1 = 1; i < Math.pow(2, n); i *= 2) {
if(n < 200000) {
for(int j =0; j<n*nx*i; j+=2){
System.out.println(”shells”);

3
}
else{
for(int i = 0; i <n; i +=3){
System.out.println(”crabs”);
3
}
3
3
(@)
(b) int leaves(int n) {
if (n < 150) {
return n;
}
return n * 2 x leaves(n / 2);
3
(b)
(¢) void snow(int n) {
int sum = 0;
for(int i = 0; i < n*n; i++) {
sum++;
3
for(int i = 0; i <n; i++) {
for(int j = 0; j < sum; j++) {
System.out.println(”winter wonderland”);
}
3
3
©

(d) void sun(int n) {

int k = 0;
for(int i = 1; i <n; i *=2) {
k++;
}
for(int i = 0; i <n; i++) {
if(tk % 5 ==10) {
k==
3
else {
for(int j = 0; j < k; j++) {
System.out.println(”let’s go to the beach”);
3
3

(d

3. 0,0, and ©, oh my! [12 points]

For each of the following statements, indicate whether it is always true, sometimes true, or never true. You do not
need to include an explanation. Assume that the domain and codomain of all functions in this problem are natural

numbers.
(@ If f(n)is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n)).

Always True Sometimes True Never True

(b) Iflog(f(n)) is © (log(g(n))) then f(n) is ©(g(n)).

Always True Sometimes True Never True

(¢) f(n)is O(f(n) -logn), but not ©(f(n) - log(n)).

Always True Sometimes True Never True

(d) Let f(n) be the worst-case running time of an insertion into a separate chaining hash table. f(n) is Q(1).

Always True Sometimes True Never True

4. Write a recurrence [9 points]

Give a base case and a recurrence for the runtime of the following function. Use variables appropriately for constants
(e.g. cl, c2, etc.) in your recurrence (you do not need to attempt to count the exact number of operations).
YOU DO NOT NEED TO SOLVE this recurrence

int seattleWeather(int n) {
if (n < 50) {
for (int 1 =0; i < 100; i++) {
print (”It’s still raining”);
3
return 332;
} else if (seattleWeather(n / 2) < 332) {
for (int i =0; i <n*n*n; i++) {
print(”It’s over 100 degrees!”);
3
3
for (int i =1; i <n; 1 *=2) {
print(”It’s a little cloudy”);
3
print(”It’s sunny!”);
return 3 * n * seattleWeather(n / 3) + 10 * seattleWeather(n / 2);

for n < 50
for n > 50

T(n) =

Yay!! You do NOT need to solve this recurrence...

5. Solve a Recurrence [10 points]

Suppose the running time of an algorithm satisfies the recurrence given below. Find the closed form for T'(N). You
may assume N is a large power of 3. Your answer should not be in Big-O notation. Show the exact constants and
bases of logarithms in your answer (e.g. do NOT use ¢, ¢; in your answer).

Your final answer must not have any summation symbols or recursion — you may find the list of summations and
logarithm identities on the last page of the exam to be useful.

You must show your work to receive any credit.

37 (%) +n* ifn>3

T(n) =
(n) 2 otherwise

6. B-tree [11 points]

(a) Given the following parameters for a B-Tree and assuming M and L were chosen appropriately, what are M
and L?
Page Size: 512 Bytes
Key Size: 8 Bytes
Pointer Size: 4 Bytes
Value Size: 16 Bytes per Record (does NOT include the key) [6 points]

(b) Now consider an alternative to the B-Tree called the C-Tree. The C-Tree is similar to the B-Tree except rather
than having internal nodes only store the key, internal nodes now store both the key and the value (note that
this means that keys and values that appear in internal nodes are no longer stored in the leaf nodes as well
like they are in regular B-Trees). This way, we do not have to iterate all the way down to the leaf nodes every
find!

Suppose you have an extremely large data set (where the relevant analysis for your code is the number of
times you have to bring in a page from memory, instead of counting operations). If you care about best-case
behavior, would you prefer a C-tree or a B-tree? Why? [3 points]

(c) If you care about worst-case behavior, why should you use a B-Tree? [2 points]

7. PIVOT! [6 points]

For the following AVL trees and key to insert:
* On the top (given) tree, draw the new node where it will be inserted into the tree (before any rotations occur).
* On the top (given) tree, put a box around every imbalanced node in the tree (if any).

* In the bottom (empty) tree, draw the final tree after any rotations are performed. If no rotations are needed,
you may write “no rotations” instead of filling in the tree. If a node does not exist in the final tree, leave that
circle blank.

o e
SN N

AN

@

8. Remove Many [6 points]
You have an array-based implementation of a 2-heap, implementing a minimum priority queue. Suppose that you
want all of the £ smallest elements of the heap, where k is a variable, but & is much smaller than n.

(a) Your first idea is to scan through the array based implementation from index 1 (where the root is stored) to
index x, where z is the last location where the k™ smallest element could be. What value of = should you
choose? Briefly (1-2 sentences) explain why you chose your value of z. (4 points)

(b) Your second idea is to call removeMin k times, then re-insert those k elements. What is the worst-case big-O
running time of this version? No justification required. (2 points)

10

9. Priority AVLs [12 points]

Recall that priority queues had three operations: insert, removeMin, and peekMin. Having just finished your imple-
mentation of an AVL tree (and not your implementation of a heap), you decide to see if you can skip heaps entirely
and just use your AVL tree code for a Priority Queue as well.

(a) Give a brief (1-2 sentence) description of pseudocode for a method getMinNode, this will be a private helper
method that finds the node containing the smallest priority in the tree. (2 points)

(b) What is the worst-case running time of getMinNode in a tree with n elements? Give a 1 sentence justification.
(2 points)

(c) Describe how to implement insert. Your description can simply describe what alterations (if any) are needed
from the standard AVL insertion. (2 points)

(d) Describe how to implement peekMin in O(1) time. Be careful! You can’t run getMinNode in this method, so
you’ll have to use it in (two) other places... (2 points)

(e) You've (at least) matched the big-O running times for heap-based implementations of priority queues. Give
at least two reasons why one might prefer the heap implementation discussed in class instead of AVL trees.

(4 points)

11

Extra piece of paper for scratch work

12

Reference Sheet

Geometric series identities

k’—i—l_l

k 00

. C , 1
E = g = if |c] < 1
z’—OC c—1 i—oc l—c ‘C|

Sums of polynomials

n

Zi: n(n+1) 2 nn+1)(2n+1) 5 ni(n+1)?

; 2 : :
Z:O ZZO Z:O

3

(@)}
W

Log identities

1
plogy(a) — , log, (") = y-log,(z) alogi(e) — Jogy(a) log,(a) = 0g,(a)

13

	1 Big-O [18 points]
	2 Code Analysis [16 points]
	3 O, , and , oh my! [12 points]
	4 Write a recurrence [9 points]
	5 Solve a Recurrence [10 points]
	6 B-tree [11 points]
	7 PIVOT! [6 points]
	8 Remove Many [6 points]
	9 Priority AVLs [12 points]

