
CSE 332 : 21AU Simulated Midterm Solutions

Instructions

• This is a simulated exam. It is designed to be done closed-book/closed-note, and with no access to electronic
devices.

• The allotted time is 50 minutes.

• Read directions carefully, especially for which problems require you to show work or provide an explanation.

• Don’t forget to answer the reflection questions after you finish the exam (you may spend as much time on
those as you wish).

• On a non-simulated exam, we can only give partial credit for work that you’ve written down.

• If you run out of room on a page, indicate that the answer continues use the back of that page. Try to avoid
writing on the very edges of the pages, as on non-simulated exams we scan your answers.

• The last two pages of the exam are a blank sheet for scratch work and a formula sheet.

Advice

• If you feel like you’re stuck on a problem, you may want to skip it and come back at the end if you have time.

• Look at the question titles on the cover page to see if you want to start somewhere other than problem 1.

• We recommend ripping off the last two pages from the exam right away.

• Remember to take deep breaths.

Question Max points

1. Big-O 18
2. Code Analysis 16
3. O,Ω, and Θ, oh, my! 12
4. Write a recurrence 9
5. Solve a recurrence 10
6. B-Tree 11
7. PIVOT! (AVL rotations) 6
8. Remove Many 6
9. Priority AVLs 12

Total 100

1

1. Big-O [18 points]

For each of the following operations or functions given below, give a simplified, tight big-O bound. This means
that, for example, O

(
2n!

)
or O

(
5n2 + 7n+ 3

)
are unlikely to get points. Unless otherwise specified, all logs are

base 2. Explanation or justification are not required.

For questions that ask for the running time of operations, assume the most efficient implementation of those data
structures is used.

For array-based structures (including hash tables), assume that you do not have to resize.

(a) Best case for insertion into a heap with n elements. Solution:

O(1).

(b) Worst case for removeMin from a heap with n3 elements. Solution:

O(logn). Recall that log(n3) = 3 log(n), so the exponent is a constant factor and shouldn’t be included.

(c) Best case running time to find and remove an element from a BST
with n elements. Solution:

O(1). If most of the tree is a “stick” and you’re removing a leaf on the not-stick-part (for example), you
could have very fast deletion.

(d) f(n) = log3 (2
n) Solution:

O(n)

(e) Worst case for n insertions into an initially empty heap. Solution:

O(n logn)

(f) T (n) =

{
T (n/2) + 5 if n ≥ 32

17 otherwise
Solution:

O(logn) This is (except for changes in the constants) the recurrence for binary search.

(g) Removing the first k elements from an array-based queue
with n elements (assume that k is much less than n). Solution:

O(n)

(h) Find the median element of an AVL tree
(assume that there are n elements in the AVL tree, and n is odd). Solution:

2

O(n)

(i) The average case for an insertion into a separate chaining hash table
where there are currently n =

√
TableSize elements

(give your answer in terms of n, not λ or TableSize). Solution:

O(1)

2. Code Analysis [16 points]

Describe the worst-case running time for the following pseudocode functions in Big-O notation in terms of the
variable n. Your answer must be tight and simplified. You do not have to show work or justify your answers for
this problem.

(a) void sand(int n) {

for(int 1 = 1; i < Math.pow(2, n); i *= 2) {

if(n < 200000) {

for(int j = 0; j < n * n * i; j += 2) {

System.out.println(”shells”);

}

}

else{

for(int i = 0; i < n; i += 3) {

System.out.println(”crabs”);

}

}

}

}

(a)

Solution:

O(n2). The outer loop runs n times (because i*= 2) and the inner loop runs n/3 times but when we
remove constant factors we get n2

(b) int leaves(int n) {

if (n < 150) {

return n;

}

return n * 2 * leaves(n / 2);

}

(b)

3

Solution:

O(logn)

(c) void snow(int n) {

int sum = 0;

for(int i = 0; i < n*n; i++) {

sum++;

}

for(int i = 0; i < n; i++) {

for(int j = 0; j < sum; j++) {

System.out.println(”winter wonderland”);

}

}

}

(c) Solution:

O(n3). The first loop runs n2 time and sets sum = n2. The second loop runs n (outer loop) * sum (inner
loop) times, and since sum = n2, this means it runs n3 times.

(d) void sun(int n) {

int k = 0;

for(int i = 1; i < n; i *= 2) {

k++;

}

for(int i = 0; i < n; i++) {

if(k % 5 == 0) {

k--;

}

else {

for(int j = 0; j < k; j++) {

System.out.println(”let’s go to the beach”);

}

}

}

}

(d)

Solution:

O(n logn) Regardless of whether we do the k– or not, we will only decrease k by at most one (no matter
how many times we go through the loop), and every time except possibly the first we’ll need to do the else
branch. We’ll do that else branch Θ(k) = Θ(log(n)) times, for each of the n times through the outer loop,
giving us the claimed O(n logn)

4

3. O,Ω, and Θ, oh my! [12 points]

For each of the following statements, indicate whether it is always true, sometimes true, or never true. You do not
need to include an explanation. Assume that the domain and codomain of all functions in this problem are natural
numbers.

(a) If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n)).

Always True Sometimes True Never True

Solution:

Always True

(b) If log(f(n)) is Θ(log(g(n))) then f(n) is Θ(g(n)).

Always True Sometimes True Never True

Solution:

Sometimes True – the claim is true for f(n) = n2 and f(n) = n3, for example, but fails when f(n) = 2n

and g(n) = 3n.

(c) f(n) is O(f(n) · logn), but not Θ(f(n) · log(n)).

Always True Sometimes True Never True

Solution:

Always True, f(n) cannot be in Ω(f(n) · logn)

(d) Let f(n) be the worst-case running time of an insertion into a separate chaining hash table. f(n) is Ω(1).

Always True Sometimes True Never True

Solution:

Always True

5

4. Write a recurrence [9 points]

Give a base case and a recurrence for the runtime of the following function. Use variables appropriately for constants
(e.g. c1, c2, etc.) in your recurrence (you do not need to attempt to count the exact number of operations).
YOU DO NOT NEED TO SOLVE this recurrence

int seattleWeather(int n) {

if (n < 50) {

for (int i = 0; i < 100; i++) {

print (”It’s still raining”);

}

return 332;

} else if (seattleWeather(n / 2) < 332) {

for (int i = 0; i < n * n * n; i++) {

print(”It’s over 100 degrees!”);

}

}

for (int i = 1; i < n; i *= 2) {

print(”It’s a little cloudy”);

}

print(”It’s sunny!”);

return 3 * n * seattleWeather(n / 3) + 10 * seattleWeather(n / 2);

}

T (n) =

{
for n < 50

for n ≥ 50

Yay!! You do NOT need to solve this recurrence...

Solution:

T (n) =

{
c0 for n < 50

T (n3) + 2T (n2) + c1 · log2 n+ c2 for n ≥ 50

Notes: For the recursive case, we see that seattleWeather(n / 2) gets called twice since it is also called in the
else-if condition. Notice that the return is always greater than or equal to 332 because the base case returns 332
and any other value also returns a value that is larger since it only adds to the previous return. So, the for loop
that runs to n3 is never executed. (So it works out that it’s never over 100 degrees in Seattle!) For the logn
component, notice that the i is multiplied by 2 at each step of the iteration.

6

5. Solve a Recurrence [10 points]

Suppose the running time of an algorithm satisfies the recurrence given below. Find the closed form for T (N). You
may assume N is a large power of 3. Your answer should not be in Big-O notation. Show the exact constants and
bases of logarithms in your answer (e.g. do NOT use c1, c2 in your answer).
Your final answer must not have any summation symbols or recursion – you may find the list of summations and
logarithm identities on the last page of the exam to be useful.
You must show your work to receive any credit.

T (n) =

{
3T

(
n
3

)
+ n2 if n > 3

2 otherwise

Solution:

T (n) = 3T
(n
3

)
+ n2

= 3

[
3T

(n

32

)
+
(n
3

)2
]
+ n2

= 32T
(n

32

)
+

n2

3
+ n2

= 32
[
3T

(n

33

)
+

(n

32

)2
]
+

n2

3
+ n2

= 33T
(n

33

)
+

n2

32
+

n2

3
+ n2

· · ·

= 3iT
(n

3i

)
+

i−1∑
j=0

n2

3j

We will need the i that hits the base case, in this case that’s when n = 3, so we solve for:

n

3i
= 3 =⇒ n = 3i+1 =⇒ i+ 1 = log3(n) =⇒ i = log3(n)− 1

Plugging in, we get:

3log3(n)−1T (3) +

log3(n)−2∑
j=0

n2

3j
= 2 · n

3
+ n2

log3(n)−2∑
j=0

(
1

3

)j

=
2n

3
+ n2 ·

(
1
3

)log3(n)−1 − 1

1/9− 1

From here, we have no more summations, so you could stop here. You could simplify further, as follows:

7

2n

3
+ n2 ·

(
1
3

)log3(n)−1 − 1

1/3− 1
=

2n

3
+ n2 · (3)

− log3(n)+1 − 1

1/3− 1

=
2n

3
+ n2 · (3)

log3(n
−1)+1 − 1

1/3− 1

=
2n

3
+ n2 · 3n

−1 − 1

−2/3

=
2n

3
+

3n− n2

−2/3

=
2n

3
+

3n2

2
− 23n

6

=
3

2
n2 − 7

2
n

8

6. B-tree [11 points]

(a) Given the following parameters for a B-Tree and assuming M and L were chosen appropriately, what are M
and L?
Page Size: 512 Bytes
Key Size: 8 Bytes
Pointer Size: 4 Bytes
Value Size: 16 Bytes per Record (does NOT include the key) [6 points]
Solution:

We start by defining the following variables.

• 1 page on disk is b bytes

• Keys are k bytes

• Pointers are t bytes

• Key/Value pairs are v bytes

We know that the amount of memory used by one leaf node is vL and the amount of memory used by one
internal node is tM + k(M − 1). We want select values for M and L such that both equations are ≤ b.

If we solve both equations for M and L, we obtain M =

⌊
b+ k

t+ k

⌋
and L =

⌊
b

v

⌋
Plugging in the given values, we get M =

⌊
512 + 8

4 + 8

⌋
= 43 and L =

⌊
512

16 + 8

⌋
= 21

Since you didn’t have a calculator, an answer of the form
⌊
512+8
4+8

⌋
would be considered simplified enough

and get full credit.

(b) Now consider an alternative to the B-Tree called the C-Tree. The C-Tree is similar to the B-Tree except rather
than having internal nodes only store the key, internal nodes now store both the key and the value (note that
this means that keys and values that appear in internal nodes are no longer stored in the leaf nodes as well
like they are in regular B-Trees). This way, we do not have to iterate all the way down to the leaf nodes every
find!
Suppose you have an extremely large data set (where the relevant analysis for your code is the number of
times you have to bring in a page from memory, instead of counting operations). If you care about best-case
behavior, would you prefer a C-tree or a B-tree? Why? [3 points] Solution:

In the best case scenario, the key we are looking for will be close to the root. In a B-Tree, the location
of the key relative to the root did not matter since we always had to iterate down to the leaf to get the
corresponding value. However, in a C-Tree, the internal nodes store both the key and the value. As such,
if a key is located close to the root, we will not have to iterate all the way down to the leaf node, saving
us disk accesses. Thus, if we care about best-case behavior, we would prefer a C-Tree.

(c) If you care about worst-case behavior, why should you use a B-Tree? [2 points] Solution:

As a C-Tree stores both the keys and the values in the internal nodes, the M values will be less than those
of a B-Tree with identical parameters. This results in the height of a C-Tree being larger than the height
of a B-Tree as the number of elements grows. In the worst case, the key we are looking for will be stored
in a leaf node. If the height of the B-Tree is less than the height of the C-Tree, we will have to make fewer
disk accesses to reach the leaf node for the B-Tree than for the C-Tree. Thus, if we care about worst-case
behavior, we should use a B-Tree.

9

7. PIVOT! [6 points]

For the following AVL trees and key to insert:

• On the top (given) tree, draw the new node where it will be inserted into the tree (before any rotations occur).

• On the top (given) tree, put a box around every imbalanced node in the tree (if any).

• In the bottom (empty) tree, draw the final tree after any rotations are performed. If no rotations are needed,
you may write “no rotations” instead of filling in the tree. If a node does not exist in the final tree, leave that
circle blank.

Item to insert: 13

10

3 7

5 18

14 20

12 16

Solution:

10

3 7

5 18

14 20

12 16

13

10

10

5
14

3 7 12 18

13 16 20

11

8. Remove Many [6 points]

You have an array-based implementation of a 2-heap, implementing a minimum priority queue. Suppose that you
want all of the k smallest elements of the heap, where k is a variable, but k is much smaller than n.

(a) Your first idea is to scan through the array based implementation from index 1 (where the root is stored) to
index x, where x is the last location where the kth smallest element could be. What value of x should you
choose? Briefly (1-2 sentences) explain why you chose your value of x. (4 points) Solution:

Heaps keep the smallest element at the top, but they’re not fully sorted! The k smallest elements could all
be in a “line” with each other with larger elements around them. So you have to check through the end

of level k − 1 level of the tree. We therefore need to check that
k−1∑
i=0

2i = 2k − 1.

(b) Your second idea is to call removeMin k times, then re-insert those k elements. What is the worst-case big-O
running time of this version? No justification required. (2 points) Solution:

O(k log(n)). Both calls are Θ(logn) in the worst-case. Since k is much less than n, repeating the calls
won’t make the heap small enough to make a difference in the efficiency.

12

9. Priority AVLs [12 points]

Recall that priority queues had three operations: insert, removeMin, and peekMin. Having just finished your imple-
mentation of an AVL tree (and not your implementation of a heap), you decide to see if you can skip heaps entirely
and just use your AVL tree code for a Priority Queue as well.

(a) Give a brief (1-2 sentence) description of pseudocode for a method getMinNode, this will be a private helper
method that finds the node containing the smallest priority in the tree. (2 points) Solution:

Starting from the root, while current node has a left child, go left. When the current node no longer has
a left child, return the current node.

(b) What is the worst-case running time of getMinNode in a tree with n elements? Give a 1 sentence justification.
(2 points) Solution:

O(log(n)). The height of an AVL tree is always O(logn).

(c) Describe how to implement insert. Your description can simply describe what alterations (if any) are needed
from the standard AVL insertion. (2 points) Solution:

We would give full credit for either “no changes needed” or “after insertion use getMinNode to update
minimum field” (the answer here depends on whether you’ve figured out part d already, so we’d accept
the answer if you hadn’t gotten there yet)

(d) Describe how to implement peekMin in O(1) time. Be careful! You can’t run getMinNode in this method, so
you’ll have to use it in (two) other places... (2 points) Solution:

Add a field currMinVal and update it by calling getMinNode after insertions and deletions. peekMin then
simply returns that field value.

(e) You’ve (at least) matched the big-O running times for heap-based implementations of priority queues. Give
at least two reasons why one might prefer the heap implementation discussed in class instead of AVL trees.
(4 points) Solution:

• Better constant factors (no pointers)

• Better memory footprint (less wasted space with fewer pointers)

• Better cache behavior possibly (heaps have better spatial locality, but for sufficiently tall heaps, that
may not help much since we bounce very far away in the array structure).

• Easier to implement.

• There might be others we haven’t thought of!

13

Extra piece of paper for scratch work

14

Reference Sheet

Geometric series identities

k∑
i=0

ci =
ck+1 − 1

c− 1

∞∑
i=0

ci =
1

1− c
if |c| < 1

Sums of polynomials

n∑
i=0

i =
n(n+ 1)

2

n∑
i=0

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=0

i3 =
n2(n+ 1)2

4

Log identities

blogb(a) = a logb(x
y) = y · logb(x) alogb(c) = clogb(a) logb(a) =

logd(a)
logd(b)

15

	1 Big-O [18 points]
	2 Code Analysis [16 points]
	3 O, , and , oh my! [12 points]
	4 Write a recurrence [9 points]
	5 Solve a Recurrence [10 points]
	6 B-tree [11 points]
	7 PIVOT! [6 points]
	8 Remove Many [6 points]
	9 Priority AVLs [12 points]

