

<section-header><section-header><text><section-header><list-item><list-item><list-item><list-item>

 Arrow of the end of th

Polynomial time reductions Y is Polynomial Time Reducible to X Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X Notations: Y

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><table-row>

14

- Reduce an arbitrary problem Y in NP to Circuit SAT
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that instance I of Y is a Yes instance iff and only if the circuit is satisfiable

Populating the NP-Completeness Universe

NP-Co

0

- Circuit Sat <_p 3-SAT
- 3-SAT <_p Independent Set
- 3-SAT <_P Vertex Cover
- Independent Set <_p Clique
- 3-SAT <_P Hamiltonian Circuit
- + Hamiltonian Circuit <_p Travelling Salesman
- 3-SAT <_P Integer Linear Programming
- 3-SAT <_p Graph Coloring
- 3-SAT <_p Subset Sum
- Subset Sum <_p Scheduling with Release times and deadlines

CSE 332

14/0/2022

19

