
1

CSE 332: Data Structures and
Parallelism

Fall 2022

Richard Anderson

Lecture 27: Minimum Spanning Trees

12/5/2022 CSE 332 1

Announcements

• Upcoming lectures
– Graph Algorithms

• Intro to graphs

• Topological Sort

• Graph Traversal
• Shortest Paths

• Minimum Spanning Tree

– Theory of NP-Completeness (2 lectures)

– Review session (Tuesday, Dec 13 (?))

– Final Exam, Thursday, Dec 15, 8:30-10:20 AM

12/5/2022 CSE 332 2

Dijkstra’s Algorithm
What about negative cost edges?

S = { }; d[s] = 0; d[v] = infinity for v != s

while S != V

Choose v in V-S with minimum d[v]

Add v to S

for each w in the neighborhood of v

newCost = d[v] + c(v, w)

if (newCost < d[w])

d[w] = newCost

prev[w] = v

Assume all edges have non-negative cost

12/5/2022 CSE 332

s

y

v

x

u

S

3

Graph Theory

• G = (V, E)
– V: vertices, |V|= n
– E: edges, |E| = m

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights

– Parallel edges
– Self loops

• Path: v1, v2, …, vk, with (v i, v i+1) in E
– Simple Path

– Cycle

– Simple Cycle

• Neighborhood
– N(v)

• Distance

• Connectivity
– Undirected

– Directed (strong connectivity)

• Trees
– Rooted

– Unrooted

12/5/2022 CSE 332 4

Spanning Tree in an Undirected
Graph

Spanning tree
- Connects all the vertices
- No cycles

12/5/2022 CSE 332

Note: this is a problem where there is a
difference between undirected graphs
and directed graphs

5

Spanning Tree Problem

• Input: An undirected graph G = (V,E). G is
connected.

• Output: T E such that

– (V,T) is a connected graph

– (V,T) has no cycles

12/5/2022 CSE 332 6

2

Spanning Tree Algorithm

ST(Vertex i) {

mark i;

for each j adjacent to i {
i f (j is unmarked) {

Add (i,j) to T;
ST(j);

}

}
}

Main() {

T = empty set;

ST(1);
}

12/5/2022 CSE 332 7

Finding a reliable routing subnetwork:

• edge cost = probability that it won’t fail

• Find the spanning tree that is least likely to fail

Best Spanning Tree

.80 .75

.95

.50
.95 1.0

.85

.84

.80

.89

12/5/2022 CSE 332 8

Example of a Spanning Tree

.80 .75

.95

.50
.95 1.0

.85

.84

.80

.89

Probability of success = .85 x .95 x .89 x .95 x 1.0 x .84
= .5735

12/5/2022 CSE 332 9

Minimum Spanning Trees
Given an undirected graph G=(V,E), find a

graph G’=(V, E’) such that:
– E’ is a subset of E

– |E’| = |V| - 1

– G’ is connected

– is minimal
 '),(

c
Evu

uv

G’ is a minimum
spanning tree.

12/5/2022 CSE 332 10

Minimum Spanning Tree Problem

• Input: Undirected Graph G = (V,E) and C(e) is
the cost of edge e.

• Output: A spanning tree T with minimum total
cost. Find a tree T that minimizes

Te

eCTC)()(

12/5/2022 CSE 332 11

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle.
Pick an edge with the smallest weight.

G=(V,E)

v

12/5/2022 CSE 332 12

3

Kruskal’s Algorithm for MST

An edge-based greedy algorithm

Builds MST by greedily adding edges

1. Initialize with
• empty MST

• all vertices marked unconnected

• all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u,v) and mark it

b. If u and v are not already connected, add (u,v) to the MST and
mark u and v as connected to each other

12/5/2022 CSE 332 13

Example of for Kruskal

1

6

5

4

7

2

33

3
4 0

2 2

1

3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)
0 1 1 2 2 3 3 3 3 4

1
3

12/5/2022 CSE 332 14

Data Structures for Kruskal

• Sorted edge list

• Disjoint Union / Find
– Union(a,b) - merge the disjoint sets named by a and b

– Find(a) returns the name of the set containing a

• Union / Find data structure will be presented at
end of lecture

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)
0 1 1 2 2 3 3 3 3 4

12/5/2022 CSE 332 15

Example of DU/F

1

6

5

4

7

2

33

3
4 0

2 2

1

3

1
3

7

2

3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)
0 1 1 2 2 3 3 3 3 4

12/5/2022 CSE 332 16

Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint
components

12

2

13

9

7

8
5

16

15

11

14

6

1

17

10

18

19

4

3

t a

e

c

g

f
b

s

u

v
12/5/2022 CSE 332 17

Kruskal’s Algorithm with DU / F

Sort the edges by increasing cost;

Initialize A to be empty;

for each edge (i,j) chosen in increasing order do
u := Find(i);

v := Find(j);
i f (u != v) then

add (i,j) to A;

Union(u,v);

This algorithm will work, but it goes through all the edges.

Is this always necessary?

12/5/2022 CSE 332 18

4

Kruskal code
void Graph::kruskal(){

int edgesAccepted = 0;

DisjSet s(NUM_VERTICES);

while (edgesAccepted < NUM_VERTICES – 1){

e = smallest weight edge not deleted yet;

// edge e = (u, v)

uset = s.find(u);

vset = s.find(v);

if (uset != vset){

edgesAccepted++;

s.unionSets(uset, vset);

}

}

}

2|E| finds

|V| unions

|E| heap ops

Total Cost:

|V| ops to init. sets

12/5/2022 CSE 332 19

Kruskal’s Algorithm: Correctness
It clearly generates a spanning tree. Call it TK.

Suppose TK is not minimum:

Pick another spanning tree Tmin with lower cost than TK

Pick the smallest edge e1=(u,v) in TK that is not in Tmin

Tmin already has a path p in Tmin from u to v
 Adding e1 to Tmin will create a cycle in Tmin

Pick an edge e2 in p that Kruskal’s algorithm considered after
adding e1 (must exist: u and v unconnected when e1

considered)
 cost(e2) cost(e1)
 can replace e2 with e1 in Tmin without increasing cost!

Keep doing this until Tmin is identical to TK

 TK must also be minimal – contradiction!

12/5/2022 CSE 332 20

Correctness

Let Tk be the tree found by Kruskal, and let T be a
di fferent spanning tree, then T is not a MST

Let e1 be the minimum cost edge of Tk not in T

If we add e1 to T, we create a unique cycle A

Let e2 be the maximum cost edge on A

c(e2) > c(e1)

T’ = T + {e1} – {e2} i s a spanning tree

C(T’) < c(T)

Therefor, T i s not a MST

12/5/2022 CSE 332

Assume the edge costs are distinct

21

Disjoint Set ADT

• Data: set of pairwise disjoint sets.

• Required operations
– Union – merge two sets to create their union

– Find – determine which set an item appears in

12/5/2022 CSE 332 22

Disjoint Sets and Naming

• Maintain a set of pairwise disjoint sets.

– {3,5,7} , {4,2,8}, {9}, {1,6}

• Each set has a unique name: one of its
members (for convenience)

– {3,5,7} , {4,2,8}, {9}, {1,6}

12/5/2022 CSE 332 23

Union / Find

• Union(x,y) – take the union of two sets named x

and y
– {3,5,7} , {4,2,8}, {9}, {1,6}

– Union(5,1)

{3,5,7,1,6}, {4,2,8}, {9},

• Find(x) – return the name of the set containing x.

– {3,5,7,1,6}, {4,2,8}, {9},

– Find(1) = 5

– Find(4) = 8

12/5/2022 CSE 332 24

5

Union/Find Trade-off

• Known result:

– Find and Union cannot both be done in worst-
case O(1) time with any data structure.

• We will instead aim for good amortized
complexity.

• For m operations on n elements:

– Target complexity: O(m) i.e. O(1) amortized

12/5/2022 CSE 332 25

Up-Tree for DS Union/Find

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate
state

Roots are the names of each set.

Observation: we will only traverse these trees upward
from any given node to find the root.

Idea: reverse the pointers (make them point up from
child to parent). The result is an up-tree.

12/5/2022 CSE 332 26

Operations

Find(x) follow x to the root and return the root.

1

2

3

45

6

7

Union(i, j) - assuming i and j roots, point j to i.

12/5/2022 CSE 332 27

Simple Implementation

• Array of indices

1

2

3

45

6

7

-1 1 -1 7 7 5 -1

1 2 3 4 5 6 7

up

up[x] = -1 means
x is a root.

12/5/2022 CSE 332 28

A Bad Case

1 2 3 n…

1

2 3 n

Union(1,2)

1

2

3 n

Union(2,3)

Union(n-1,n)

…

…

1

2

3

n

:
:

Find(1) n steps!!

12/5/2022 CSE 332 29

Amortized Cost

• Cost of n Union operations followed by n Find
operations is n2

• Θ(n) per operation

12/5/2022 CSE 332 30

6

Two Big Improvements

Can we do better? Yes!

1. Union-by-size
• Improve Union so that Find only takes worst case

time of Θ(log n).

2. Path compression
• Improve Find so that, with Union-by-size,

Find takes amortized time of almost Θ(1).

12/5/2022 CSE 332 31

Union-by-Size

Union-by-size
– Always point the smaller tree to the root of the

larger tree

1

2

3

45

6

7

S-Union(7,1)

2 41

12/5/2022 CSE 332 32

Example Again

1 2 3 n

1

2 3 n

S-Union(1,2)

1

2

3

n

S-Union(2,3)

S-Union(n-1,n)

…

…
:
:

1

2

3 n

…

Find(1) constant time
…

12/5/2022 CSE 332 33

Analysis of Union-by-Size

• Theorem: With union-by-size an up-tree of height h has size at
least 2h.

• Proof by induction
– Base case: h = 0. The up-tree has one node, 20 = 1

– Inductive hypothesis: Assume true for h-1

– Observation: tree gets taller only as a result of a union.

h-1T1 T2

T = S-Union(T1,T2)

≤h-1

12/5/2022 CSE 332 34

Analysis of Union-by-Size

• What is worst case complexity of Find(x) in an
up-tree forest of n nodes?

• (Amortized complexity is no better.)
12/5/2022 CSE 332 35

Worst Case for Union-by-Size

n/2 Unions-by-size

n/4 Unions-by-size

12/5/2022 CSE 332 36

7

Example of Worst Cast (cont’)

After n -1 = n/2 + n/4 + …+ 1 Unions-by-size

Find
If there are n = 2k nodes then the longest
path from leaf to root has length k.

log2n

12/5/2022 CSE 332 37

Array Implementation

1

2

3

45

6

7

-1

2

1 -1

1

7 7 5 -1

4

1 2 3 4 5 6 7

up
size

Can store separate size array:

2 41

12/5/2022 CSE 332 38

Elegant Array Implementation

1

2

3

45

6

7

-2 1 -1 7 7 5 -4

1 2 3 4 5 6 7

up

Better, store sizes in the up array:

Negative up-values correspond to sizes of roots.

2 41

12/5/2022 CSE 332 39

Code for Union-by-Size
S-Union(i,j){

// Collect sizes

si = -up[i];
sj = -up[j];

// verify i and j are roots

assert(si >=0 && sj >=0)
// point smaller sized tree to

// root of larger, update size

if (si < sj) {
up[i] = j;

up[j] = -(si + sj);

else {
up[j] = i;

up[i] = -(si + sj);

}

}

12/5/2022 CSE 332 40

Path Compression
• To improve the amortized complexity, we’ll borrow an idea from

splay trees:

– When going up the tree, improve nodes on the path!

• On a Find operation point all the nodes on the search path
directly to the root. This is called “path compression.”

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910

12/5/2022 CSE 332 41

Self-Adjustment Works

PC-Find(x)

x

12/5/2022 CSE 332 42

8

Draw the result of Find(5):

6 81

2

3

4

5

7

9

12/5/2022 CSE 332 43

Code for Path Compression Find
PC-Find(i) {

//find root

j = i;

while (up[j] >= 0) {
j = up[j];

root = j;

//compress path

if (i != root) {

parent = up[i];
while (parent != root) {

up[i] = root;

i = parent;
parent = up[parent];

}

}

return(root)
}

12/5/2022 CSE 332 44

Complexity of
Union-by-Size + Path Compression

• Worst case time complexity for…

– …a single Union-by-size is:

– …a single PC-Find is:

• Time complexity for m n operations on n elements
has been shown to be O(m log* n).

[See Weiss for proof.]

– Amortized complexity is then O(log* n)

– What is log* ?
12/5/2022 CSE 332 45

log* n

log* n = number of times you need to apply
log to bring value down to at most 1

log* 2 = 1

log* 4 = log* 22 = 2

log* 16 = log* 222 = 3 (log log log 16 = 1)

log* 65536 = log* 2222
= 4 (log log log log 65536 = 1)

log* 265536 = …………… ≈ log* (2 x 1019,728) = 5

log * n ≤ 5 for all reasonable n.

12/5/2022 CSE 332 46

The Tight Bound

In fact, Tarjan showed the time complexity for m
n operations on n elements is:

Q(m a(m, n))

Amortized complexity is then Q(a(m, n)) .

What is a(m, n)?

– Inverse of Ackermann’s function.

– For reasonable values of m, n, grows even
slower than log * n. So, it’s even “more
constant.”

Proof is beyond scope of this class. A simple
algorithm can lead to incredibly hardcore
analysis!

12/5/2022 CSE 332 47

What about the minimum spanning
tree of a directed graph?

• Must specify the root r

• Branching: Out tree with root r

a

b

c
r

e

g

f

d

4

2

1

2

1

5

4

2

3

3

6

3

7

4

a

b

c
r

e

g

f

d

4

2

1

2

1

5

4

2

3

3

6

3

7

4

Assume all vertices reachable from r Also called an arborescence
12/5/2022 CSE 332 48

