CSE 332: Data Structures and Parallelism

Fall 2022

Richard Anderson
Lecture 27: Minimum Spanning Trees

Announcements

- Upcoming lectures
- Graph Algorithms
- Intro to graphs
- Topological Sort
- Graph Traversal
- Shortest Paths
- Minimum Spanning Tree
- Theory of NP-Completeness (2 lectures)
- Review session (Tuesday, Dec 13 (?))
- Final Exam, Thursday, Dec 15, 8:30-10:20 AM

Assume all edges have non-negative cost

Dijkstra's Algorithm

What about negative cost edges?

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
while S != V
Choose v in V-S with minimum $\mathrm{d}[\mathrm{v}]$
Add v to S
for each w in the neighborhood of v
newCost $=d[v]+c(v, w)$
if (newCost < d[w])
$\mathrm{d}[\mathrm{w}]=$ newCost
$\operatorname{prev}[\mathrm{w}]=\mathrm{v}$

Graph Theory

- $G=(V, E)$
- V: vertices, $|\mathrm{V}|=\mathrm{n}$
- E: edges, $|\mathrm{E}|=m$
- Undirected graphs
- Edges sets of two vertices $\{u, v\}$
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops
- Path: $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$, with $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
- Simple Path
- Cycle
- Simple Cycle
- Neighborhood
- N(v)
- Distance
- Connectivity
- Undirected
- Directed (strong connectivity)
- Trees
- Rooted
- Unrooted

Spanning Tree in an Undirected Graph

Note: this is a problem where there is a difference between undirected graphs and directed graphs

Spanning tree

- Connects all the vertices
- No cycles

Spanning Tree Problem

- Input: An undirected graph $G=(\mathrm{V}, \mathrm{E})$. G is connected.
- Output: T \subset E such that
- (V,T) is a connected graph
- (V, T) has no cycles

Spanning Tree Algorithm

```
ST(Vertex i) {
    mark i;
    for each j adjacent to i {
        if (j is unmarked) {
        Add (i,j) to T;
        ST(j);
        }
    }
}
```


Best Spanning Tree

Finding a reliable routing subnetwork:

- edge cost = probability that it won't fail
- Find the spanning tree that is least likely to fail

Example of a Spanning Tree

Probability of success $=.85 \times .95 \times .89 \times .95 \times 1.0 \times .84$

$$
=.5735
$$

Minimum Spanning Trees

Given an undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, find a graph $\mathbf{G}^{\prime}=\left(\mathbf{V}, \mathbf{E}^{\prime}\right)$ such that:
$-E^{\prime}$ is a subset of E
$-\left|E^{\prime}\right|=|V|-1$
$-G^{\prime}$ is connected

G^{\prime} is a minimum spanning tree.

- $\quad \sum \mathrm{c}_{u \nu}$ is minimal $(u, v) \in E^{\prime}$

Minimum Spanning Tree Problem

- Input: Undirected Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and $\mathrm{C}(\mathrm{e})$ is the cost of edge e.
- Output: A spanning tree T with minimum total cost. Find a tree T that minimizes

$$
C(T)=\sum_{e \in T} C(e)
$$

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

Kruskal's Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with

- empty MST
- all vertices marked unconnected
- all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u, v) and mark it
b. If u and v are not already connected, add (u, v) to the MST and mark u and v as connected to each other

Example of for Kruskal

$$
\begin{array}{cccc}
(7,4) & (2,1) & (7,5) & (5,6) \\
0 & 1 & (5,4) & (1,6) \\
\hline
\end{array}
$$

Data Structures for Kruskal

- Sorted edge list

$$
\underset{0}{(7,4)}(2,1)(7,5)(5,6)(5,4)(1,6)(2,7)(2,3)(3,4)(1,5)
$$

- Disjoint Union / Find
- Union (a, b) - merge the disjoint sets named by a and b
- Find(a) returns the name of the set containing a
- Union / Find data structure will be presented at end of lecture

Example of DU/F

Kruskal's Algorithm

- Add the cheapest edge that joins disjoint components

Kruskal's Algorithm with DU / F

Sort the edges by increasing cost;
Initialize A to be empty; for each edge (i,j) chosen in increasing order do
$\mathrm{u}:=$ Find(i);
$\mathrm{v}:=$ Find(j);
if ($u!=v$) then
add (i,j) to A;
Union(u, v);

This algorithm will work, but it goes through all the edges.
Is this always necessary?

Kruskal code

```
void Graph::kruskal(){
    int edgesAccepted = 0;
    DisjSet s(NUM_VERTICES);
    while (edgesAccepted < NUM_VERTICES - 1){
    e = smallest weight edge not deleted yet;
    // edge e = (u, v)
    uset = s.find(u);
    vset = s.find(v);
    if (uset != vset){
        edgesAccepted++;
        s.unionSets(uset, vset);
    }
    }
}
```


Kruskal's Algorithm: Correctness

It clearly generates a spanning tree. Call it T_{K}.
Suppose T_{K} is not minimum:
Pick another spanning tree $T_{\text {min }}$ with lower cost than T_{k}
Pick the smallest edge $e_{1}=(u, v)$ in T_{K} that is not in $T_{\text {min }}$
$\mathrm{T}_{\text {min }}$ already has a path p in $\mathrm{T}_{\text {min }}$ from u to v
\Rightarrow Adding e_{1} to $\mathrm{T}_{\text {min }}$ will create a cycle in $\mathrm{T}_{\text {min }}$
Pick an edge e_{2} in p that Kruskal's algorithm considered after adding e_{1} (must exist: u and v unconnected when e_{1} considered)
$\Rightarrow \operatorname{cost}\left(e_{2}\right) \geq \operatorname{cost}\left(e_{1}\right)$
\Rightarrow can replace e_{2} with e_{1} in $T_{\text {min }}$ without increasing cost!
Keep doing this until $T_{\text {min }}$ is identical to T_{K}
$\Rightarrow T_{k}$ must also be minimal - contradiction!

Correctness

Let T_{k} be the tree found by Kruskal, and let T be a different spanning tree, then T is not a MST
Let e_{1} be the minimum cost edge of T_{k} not in T
If we add e_{1} to T, we create a unique cycle A
Let e_{2} be the maximum cost edge on A

$$
\begin{aligned}
& c\left(e_{2}\right)>c\left(e_{1}\right) \\
& T^{\prime}=T+\left\{e_{1}\right\}-\left\{e_{2}\right\} \text { is a spanning tree } \\
& C\left(T^{\prime}\right)<c(T)
\end{aligned}
$$

Therefor, T is not a MST

Disjoint Set ADT

- Data: set of pairwise disjoint sets.
- Required operations
- Union - merge two sets to create their union
- Find - determine which set an item appears in

Disjoint Sets and Naming

- Maintain a set of pairwise disjoint sets.

$$
-\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}
$$

- Each set has a unique name: one of its members (for convenience)
$-\{3, \underline{5}, 7\},\{4,2, \underline{8}\},\{\underline{9}\},\{\underline{1}, 6\}$

Union / Find

- Union (x, y) - take the union of two sets named x and y
$-\{3, \underline{5}, 7\},\{4,2, \underline{8}\},\{\underline{9}\},\{1,6\}$
- Union(5,1)

$$
\{3,5,7,1,6\},\{4,2,8\},\{9\},
$$

- Find (x) - return the name of the set containing x.
- \{3, $\underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
$-\operatorname{Find}(1)=5$
$-\operatorname{Find}(4)=8$

Union/Find Trade-off

- Known result:
- Find and Union cannot both be done in worstcase $O(1)$ time with any data structure.
- We will instead aim for good amortized complexity.
- For m operations on n elements:
- Target complexity: $O(m)$ i.e. $O(1)$ amortized

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an up-tree.

Initial state

Intermediate state

Operations

Find (x) follow x to the root and return the root. Union(i, j) - assuming i and j roots, point j to i.

Simple Implementation

- Array of indices

A Bad Case

Find(1) n steps!!

Amortized Cost

- Cost of n Union operations followed by n Find operations is n^{2}
- $\Theta(n)$ per operation

Two Big Improvements

Can we do better? Yes!

1. Union-by-size

- Improve Union so that Find only takes worst case time of $\Theta(\log n)$.

2. Path compression

- Improve Find so that, with Union-by-size, Find takes amortized time of almost $\Theta(1)$.

Union-by-Size

Union-by-size

- Always point the smaller tree to the root of the larger tree
S-Union(7,1)

(3) ${ }^{1}$

Example Again

(1) (2) (3) \cdots (n)

Analysis of Union-by-Size

- Theorem: With union-by-size an up-tree of height h has size at least 2^{h}.
- Proof by induction
- Base case: $h=0$. The up-tree has one node, $2^{0}=1$
- Inductive hypothesis: Assume true for $h-1$
- Observation: tree gets taller only as a result of a union.

Analysis of Union-by-Size

- What is worst case complexity of Find (x) in an up-tree forest of n nodes?
- (Amortized complexity is no better.)

Worst Case for Union-by-Size

n/2 Unions-by-size

n/4 Unions-by-size

Example of Worst Cast (cont')

After $n-1=n / 2+n / 4+\ldots+1$ Unions-by-size

If there are $n=2^{k}$ nodes then the longest path from leaf to root has length k.

Array Implementation

2

Can store separate size array:

	1	2	3	4	5	6		
up	-1	1	-1	7	7	5		
size	2		1				4	

Elegant Array Implementation

2

Better, store sizes in the up array:

$$
\begin{array}{c|c|c|c|c|c|c|}
& 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{array}
$$

Negative up-values correspond to sizes of roots.

Code for Union-by-Size

```
S-Union(i,j) {
    // Collect sizes
    si = -up[i];
    sj = -up[j];
    // verify i and j are roots
    assert(si >=0 && sj >=O)
    // point smaller sized tree to
    // root of larger, update size
    if (si < sj) {
        up[i] = j;
        up[j] = -(si + sj);
    else {
        up[j] = i;
        up[i] = -(si + sj);
    }
}
```


Path Compression

- To improve the amortized complexity, we'll borrow an idea from splay trees:
- When going up the tree, improve nodes on the path!
- On a Find operation point all the nodes on the search path directly to the root. This is called "path compression."

Self-Adjustment Works

$\xrightarrow{\text { PC-Find }(x)}$

Draw the result of Find(5):

Code for Path Compression Find

```
PC-Find(i) {
    //find root
    j = i;
    while (up[j] >= 0) {
        j = up[j];
    root = j;
    //compress path
    if (i != root)
        parent = up[i];
        while (parent != root) {
            up[i] = root;
            i = parent;
            parent = up[parent];
        }
    }
    return(root)
}
```


Complexity of

Union-by-Size + Path Compression

- Worst case time complexity for...
- ...a single Union-by-size is:
- ...a single PC-Find is:
- Time complexity for $m \geq n$ operations on n elements has been shown to be $\mathrm{O}\left(m \log ^{*} n\right)$.
[See Weiss for proof.]
- Amortized complexity is then $\mathrm{O}\left(\log ^{*} n\right.$)
- What is log* ?

log* n

log* $n=$ number of times you need to apply log to bring value down to at most 1

$$
\begin{aligned}
& \log ^{*} 2=1 \\
& \log ^{*} 4=\log ^{*} 2^{2}=2 \\
& \log ^{*} 16=\log ^{*} 2^{2^{2}}=3 \quad(\log \log \log 16=1) \\
& \log ^{*} 65536=\log ^{*} 2^{222}=4 \quad(\log \log \log \log 65536=1) \\
& \log ^{*} 2^{65536}=\ldots \approx \log ^{*}\left(2 \times 10^{19,728}\right)=5
\end{aligned}
$$

$\log * n \leq 5$ for all reasonable n.

The Tight Bound

In fact, Tarjan showed the time complexity for $m \geq$ n operations on n elements is:

$$
\Theta(m \alpha(m, n))
$$

Amortized complexity is then $\Theta(\alpha(m, n))$.
What is $\alpha(m, n)$?

- Inverse of Ackermann's function.
- For reasonable values of m, n, grows even slower than log * n. So, it's even "more constant."

Proof is beyond scope of this class. A simple algorithm can lead to incredibly hardcore analysis!

What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

Assume all vertices reachable from r

Also called an arborescence

