
1

CSE 332: Data Structures and
Parallelism

Spring 2022

Richard Anderson

Lecture 26: Dijkstra’s Algorithm

12/2/2022 CSE 332 1

Announcements

• Upcoming lectures

– Intro to graphs

– Topological Sort

– Graph Algorithms

• Graph Traversal

• Shortest Paths

• Minimum Spanning Tree

– Theory of NP-Completeness (2 lectures)

12/2/2022 CSE 332 2

Graph Theory

• G = (V, E)
– V: vertices, |V|= n
– E: edges, |E| = m

• Undirected graphs
– Edges sets of two vertices

{u, v}
• Directed graphs

– Edges ordered pairs (u, v)
• Many other flavors

– Edge / vertices weights
– Parallel edges
– Self loops

• Path: v1, v2, …, vk, with
(vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted

12/2/2022 CSE 332 3

Graph Representation

a
b

c
d

V = { a, b, c, d}

E = { {a, b}, {a, c}, {a, d}, {b, d} }

a

b

c

d

b c d

a d

a

a b

1 1 1

1 0 1

1 0 0

1 1 0

Adjacency MatrixAdjacency List

O(n + m) space O(n2) space

12/2/2022 CSE 332 4

Find the shortest path

12/2/2022 CSE 332 5

The Shortest Path Problem
Given a graph G, and vertices s and t in G, find the
shortest path from s to t.

Two cases: weighted and unweighted.
For a path p = v0 v1 v2 … vk

– unweighted length of path p = k (length)

– weighted length of path p = i=0..k-1 ci,i+1 (cost)

We will assume the graph is directed

12/2/2022 CSE 332 6

2

Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest
paths from s to all vertices in G.

– How much harder is this than finding single shortest
path from s to t?

• Most algorithms will have to find the shortest path to
every vertex in the graph in the worst case
– Although may stop early in some cases

12/2/2022 CSE 332 7

SSSP: Unweighted Version

• This is just Breadth First Search

– Build a breadth first search tree starting from s

12/2/2022 CSE 332 8

void BFS(Vertex s){

Queue q(NUM_VERTICES);

Vertex v, w;

for each w {

w.dist = INFINITY;

w.prev = -1;

}

s.dist = 0;

q.enqueue(s);

while (!q.isEmpty()){

v = q.dequeue();

for each w adjacent to v

if (w.dist == INFINITY){

w.dist = v.dist + 1;

w.prev = v;

q.enqueue(w);

}

}

}

each edge examined
at most once – if adjacency
lists are used

each vertex enqueued
at most once

12/2/2022 CSE 332 9

v3

v6

v1

v2 v4

v5

v0
s

12/2/2022 CSE 332 10

V Dist prev

v0

v1

v2

v3

v4

v5

v6

Weighted shortest paths problem

a

b

c
s

e

g

f

d

4

2

3

2

1
5

4

2
3

3

6

3

7

4

h

m

n

j

k

l

o

i
4

4

4

3

3

2

2

2

2

2

1

1

7

7

7

7

6

6

6

Construct Shortest Path Tree
from s

a

b

c
s

e

g

f

d

4

2

1

2

1
5

4

2
3

3

6

3

7

4
a

b

c
s

e

g

f

d

3

Dijkstra’s Algorithm: Idea

Adapt BFS to handle weighted
graphs

Two kinds of vertices:
– Known

• shortest distance
is already known

– Unknown

• Have tentative distance

12/2/2022 CSE 332 13

Assume all edges have non-negative cost

Dijkstra’s Algorithm: Idea

At each step:

1) Pick closest unknown
vertex

2) Add it to known vertices

3) Update distances

12/2/2022 CSE 332 14

Dijkstra’s Algorithm
S = { }; d[s] = 0; d[v] = infinity for v != s

while S != V

Choose v in V-S with minimum d[v]

Add v to S

for each w in the neighborhood of v

newCost = d[v] + c(v, w)

if (newCost < d[w])

d[w] = newCost

prev[w] = v

s

u

v

z

y

x

1

4

3

2

3

2

1

2

10

1

2 2

5

4

Assume all edges have non-negative cost

12/2/2022 CSE 332 15

Important Features

• Once a vertex is known (in S), the cost of the shortest
path to that vertex is correct

• While a vertex is still unknown, another shorter path
to it might still be found

• The shortest path can found by following the
previous pointers stored at each vertex

12/2/2022 CSE 332 16

v3

v6

v1

v2
v4

v5

v0
s

1

2

2

2

1

1 1

5 3

5

6

10

V Known? Cost Previous

v0

v1

v2

v3

v4

v5

v6 12/2/2022 CSE 332 17

Implementation
S = { }; d[s] = 0; d[v] = infinity for v != s

while S != V

Choose v in V-S with minimum d[v]

Add v to S

for each w in the neighborhood of v

newCost = d[v] + c(v, w)

if (newCost < d[w])

d[w] = newCost

prev[w] = v

s

u

v

z

y

x

1

4

3

2

3

2

1

2

10

1

2 2

5

4

What are the heap operations?

How many heap operations?

12/2/2022 CSE 332 18

4

int dist[N], prev[N];

for (int i = 0; i < N; i++){
dist[i] = INFINITY;

prev[i] = -1;

}

dist[s] = 0;

Heap h = new Heap(dist);

while (!h.isEmpty()){

v = h.DeleteMin();

for each w adjacent to v {

int newCost = dist[v] + cost(v,w);

if (newCost < dist[w]){

dist[w] = newCost;

h.DecreaseKey(w, newCost);

prev[w] = v;

}

}

}
12/2/2022 CSE 332 19

Dijkstra Algorithm
Correctness Proof

• Elements in S have the correct label

• Induction: when v is added to S, it has the
correct distance label
– Dist(s, v) = d[v] when v added to S

s

y

v

x

u

S

12/2/2022 CSE 332 20

D-Heaps (again)

• Heaps with branching factor D

• DeleteMin runtime O(DlogD N)

• Decrease Key runtime O(logD N)

12/2/2022 CSE 332 21

Dijkstra’s Algorithm with D heaps

• n DeleteMin operations

• m DecreaseKey operations

• Runtime O(n DlogD n + m logD n)

• What value for D?

12/2/2022 CSE 332 22

Why do we worry about negative cost
edges?

12/2/2022 CSE 332 23

