

CSE 332: Data Structures and Parallelism

Spring 2022

Richard Anderson

Lecture 26: Dijkstra's Algorithm

Announcements

- Upcoming lectures
 - Intro to graphs
 - Topological Sort
 - Graph Algorithms
 - Graph Traversal
 - Shortest Paths
 - Minimum Spanning Tree
 - Theory of NP-Completeness (2 lectures)

Graph Theory

- G = (V, E)
 - V: vertices, |V| = n
 - E: edges, |E| = m
- Undirected graphs
 - Edges sets of two vertices {u, v}
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

- Path: v₁, v₂, ..., v_k, with (v_i, v_{i+1}) in E
 - Simple Path
 - Cycle
 - Simple Cycle
- Neighborhood
 - -N(v)
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph Representation

 $V = \{ a, b, c, d \}$

 $E = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\} \}$

Adjacency List

Adjacency Matrix

O(n + m) space

O(n²) space

Find the shortest path

The Shortest Path Problem

Given a graph *G*, and vertices *s* and *t* in *G*, find the shortest path from *s* to *t*.

Two cases: weighted and unweighted.

For a path
$$p = v_0 v_1 v_2 \dots v_k$$

- unweighted length of path p = k (length)
- weighted length of path $p = \sum_{i=0..k-1} c_{i,i+1}$ (cost)

We will assume the graph is directed

Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest paths from s to <u>all</u> vertices in G.

- How much harder is this than finding single shortest path from s to t?
 - Most algorithms will have to find the shortest path to every vertex in the graph in the worst case
 - Although may stop early in some cases

SSSP: Unweighted Version

- This is just Breadth First Search
 - Build a breadth first search tree starting from s

```
void BFS(Vertex s) {
  Queue q(NUM VERTICES);
  Vertex v, w;
  for each w {
    w.dist = INFINITY;
    w.prev = -1;
  s.dist = 0;
  q.enqueue(s);
                                     each edge examined
  while (!q.isEmpty()){
                                     at most once – if adjacency
                                     lists are used
    v = q.dequeue();
    for each w adjacent to v
      if (w.dist == INFINITY) {
        w.dist = v.dist + 1;
                                   each vertex enqueued
        w.prev = v;
                                   at most once
        q.enqueue(w);
```


V	Dist	prev
V_0		
V ₁		
V_2		
V_3		
V ₃ V ₄		
V ₅		
V_6		

CSE 332

10

Weighted shortest paths problem

Construct Shortest Path Tree from s

Dijkstra's Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:

- Known
 - shortest distance is already known
- Unknown
 - Have tentative distance

CSE 332 13

Dijkstra's Algorithm: Idea

At each step:

- Pick closest unknown vertex
- 2) Add it to known vertices
- 3) Update distances

CSE 332 14

Assume all edges have non-negative cost

Dijkstra's Algorithm

```
S = { }; d[s] = 0; d[v] = infinity for v != s
while S != V

Choose v in V-S with minimum d[v]
Add v to S
for each w in the neighborhood of v

newCost = d[v] + c(v, w)
if (newCost < d[w])

d[w] = newCost

prev[w] = v</pre>
```


Important Features

- Once a vertex is known (in S), the cost of the shortest path to that vertex is correct
- While a vertex is still unknown, another shorter path to it might still be found
- The shortest path can found by following the previous pointers stored at each vertex

V	Known?	Cost	Previous
v0			
v1			
v2			
v3			
v4			
v5			
V6 12/2	/2022		CSE 332

Implementation

```
S = \{ \}; \quad d[s] = 0; \quad d[v] = infinity for v != s
while S != V
Choose v in V-S with minimum d[v]
Add v to S
for each w in the neighborhood of v
newCost = d[v] + c(v, w)
if (newCost < d[w])
d[w] = newCost
prev[w] = v
```


What are the heap operations?

How many heap operations?

Dijkstra Algorithm

```
int dist[N], prev[N];
for (int i = 0; i < N; i++) {
   dist[i] = INFINITY;
   prev[i] = -1;
dist[s] = 0;
Heap h = new Heap(dist);
while (!h.isEmpty()){
  v = h.DeleteMin();
  for each w adjacent to v {
    int newCost = dist[v] + cost(v,w);
    if (newCost < dist[w]) {</pre>
       dist[w] = newCost;
       h.DecreaseKey(w, newCost);
       prev[w] = v;
```

Correctness Proof

- Elements in S have the correct label
- Induction: when v is added to S, it has the correct distance label
 - Dist(s, v) = d[v] when v added to S

D-Heaps (again)

- Heaps with branching factor D
- DeleteMin runtime O(Dlog_D N)
- Decrease Key runtime O(log_D N)

Dijkstra's Algorithm with D heaps

- n DeleteMin operations
- m DecreaseKey operations
- Runtime O(n Dlog_D n + m log_D n)
- What value for D?

Why do we worry about negative cost edges?