CSE 332: Data Structures and Parallelism

Spring 2022

Richard Anderson
Lecture 26: Dijkstra's Algorithm

Announcements

- Upcoming lectures
- Introto graphs
- Topological Sort
- Graph Algorithms
- Graph Traversal
- Shortest Paths
- Minimum Spanning Tree
- Theory of NP-Completeness (2 lectures)

Graph Theory

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- V: vertices, $|\mathrm{V}|=\mathrm{n}$
- E : edges, $|\mathrm{E}|=\mathrm{m}$
- Undirected graphs
- Edges sets of two vertices \{u, v\}
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops
- Path: $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$, with $\left(v_{i}, v_{i+1}\right)$ in E
- Simple Path
- Cycle
- Simple Cycle
- Neighborhood
- N(v)
- Distance
- Connectivity
- Undirected
- Directed (strong connectivity)
- Trees
- Rooted
- Unrooted

Graph Representation

$$
\begin{aligned}
& V=\{a, b, c, d\} \\
& E=\{\{a, b\},\{a, c\},\{a, d\},\{b, d\}\}
\end{aligned}
$$

Adjacency List
$O(n+m)$ space

	1	1	1
1		0	1
1	0		0
1	1	0	

Adjacency Matrix
$\mathrm{O}\left(\mathrm{n}^{2}\right)$ space

Find the shortest path

The Shortest Path Problem

Given a graph G, and vertices s and t in G, find the shortest path from s to t.

Two cases: weighted and unweighted.
For a path $p=v_{0} v_{1} v_{2} \ldots v_{k}$

- unweighted length of path $p=k$
- weighted length of path $p=\sum_{i=0 . . k-1} c_{i, j+1}$ (cost)

We will assume the graph is directed

Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest paths from s to all vertices in G.

- How much harder is this than finding single shortest path from s to t?
- Most algorithms will have to find the shortest path to every vertex in the graph in the worst case
- Although may stop early in some cases

SSSP: Unweighted Version

- This is just Breadth First Search
- Build a breadth first search tree starting from s

```
void BFS (Vertex s) {
    Queue q(NUM_VERTICES);
    Vertex v, w;
    for each w {
        w.dist = INFINITY;
        w.prev = -1;
    }
s.dist = 0;
q.enqueue(s);
while (!q.isEmpty()){
        v = q.dequeue();
        for each w adjacent to v
each edge examined
at most once - if adjacency
lists are used
```

```
            if (w.dist == INFINITY){
                w.dist = v.dist + 1;
                w.prev = v;
                    each vertex enqueued
                q.enqueue(w);
            }
    }
}
```


Weighted shortest paths problem

Construct Shortest Path Tree from s

(c)
(b)
(1)
©
(g)

Assume all edges have non-negative cost

Dijkstra's Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:

- Known
- shortest distance is already known
- Unknown
- Have tentative distance

Dijkstra's Algorithm: Idea

At each step:

1) Pick closest unknown vertex
2) Add it to known vertices
3) Update distances

Assume all edges have non-negative cost

Dijkstra's Algorithm

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
while S != V
Choose v in V-S with minimum $d[v]$
Add v to S
for each w in the neighborhood of v

$$
\text { newCost }=d[v]+c(v, w)
$$

if (newCost < d[w])

$$
\mathrm{d}[\mathrm{w}]=\text { newCost }
$$

$$
\operatorname{prev}[\mathrm{w}]=\mathrm{v}
$$

Important Features

- Once a vertex is known (in S), the cost of the shortest path to that vertex is correct
- While a vertex is still unknown, another shorter path to it might still be found
- The shortest path can found by following the previous pointers stored at each vertex

Implementation

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$ while $S!=\mathrm{V}$

Choose v in V-S with minimum $d[v]$ Add v to S
for each w in the neighborhood of v newCost $=d[v]+c(v, w)$ if (newCost < d[w])

$$
\begin{aligned}
& \mathrm{d}[\mathrm{w}]=\text { newCost } \\
& \operatorname{prev}[\mathrm{w}]=\mathrm{v}
\end{aligned}
$$

What are the heap operations?

How many heap operations?

Dijkstra Algorithm

```
int dist[N], prev[N];
for (int i = 0; i < N; i++) {
    dist[i] = INFINITY;
    prev[i] = -1;
}
dist[s] = 0;
Heap h = new Heap(dist);
while (!h.isEmpty()){
    v = h.DeleteMin();
    for each w adjacent to v {
        int newCost = dist[v] + cost(v,w);
        if (newCost < dist[w]){
                dist[w] = newCost;
                h.DecreaseKey(w, newCost);
                prev[w] = v;
        }
    }
}

\section*{Correctness Proof}
- Elements in S have the correct label
- Induction: when \(v\) is added to \(S\), it has the correct distance label
- Dist(s, v) = d[v] when vadded to \(S\)


\section*{D-Heaps (again)}
- Heaps with branching factor D
- DeleteMin runtime \(O\left(\operatorname{Dlog}_{D} N\right)\)
- Decrease Key runtime \(\mathrm{O}\left(\log _{\mathrm{D}} \mathrm{N}\right)\)

\section*{Dijkstra's Algorithm with D heaps}
- n DeleteMin operations
- m DecreaseKey operations
- Runtime \(O\left(n \operatorname{Dlog}_{D} n+m \log _{D} n\right.\) )
- What value for \(D\) ?

\section*{Why do we worry about negative cost edges?}```

