CSE 332: Data Structures and Parallelism

Fall 2022
Richard Anderson
Lecture 25: Graph Traversal and Shortest Paths and Other Algorithms

Announcements

- Lectures

- Intro to graphs
-Topological Sort
-Parallelism and Concurrency (6 lectures)
- Graph Algorithms
- Graph Traversal
- Shortest Paths
- Minimum Spanning Tree
- Theory of NP-Completeness (2 lectures)
Graph Representation

$V=\{a, b, c, d\}$
$E=\{\{a, b\},\{a, c\},\{a, d\},\{b, d\}\}$

	1	1	1
1		0	1
1	0		0
1	1	0	

Adjacency List
Adjacency Matrix
$\mathrm{O}(\mathrm{n}+\mathrm{m})$ space
$\mathrm{O}\left(\mathrm{n}^{2}\right)$ space
11/30/2022

Topological Sort

```
while there is a vertex v with in-degree 0
```

 output v
 emove \(v\) from \(G\)
 \}

- Path: $v_{1}, v_{2}, \ldots, v_{k}$, with $\left(v_{i}, v_{i+1}\right) \in E$ - Simple Path
- Cycle
- Simple Cycle
- Neighborhood
$-N(v)$
- Distance
- Connectivity
- Undirected
- Directed (strong connectivity)
- Trees
- Rooted
- Unrooted

Graph Theory

$G=(V, E)$

- V: vertices, $|\mathrm{V}|=\mathrm{n}$
- E : edges, $|\mathrm{E}|=m$
ndirected graphs

$$
\{u, v\}
$$

- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops

11/30/2022
CSE 332

Graph search

- Find a path from s to t

$$
\begin{aligned}
& S=\{s\} \\
& \text { while } S \text { is not empty } \\
& \qquad \begin{array}{l}
u=\operatorname{Select}(S) \\
\text { visit } u \\
\text { foreach } v \text { in } N(u) \\
\text { if } v \text { is unvisited } \\
\qquad \begin{array}{l}
\text { Add }(S, v) \\
\operatorname{Pred}[v]=u
\end{array} \\
\qquad \text { if }(v=t) \text { then path found }
\end{array}
\end{aligned}
$$

Breadth First Search

- Build a BFS tree from s

$$
\mathrm{Q}=\{\mathrm{s}\}
$$

Level[s] = 1;
while Q is not empty
$u=Q$. Dequeue()
visit u
foreach v in $N(u)$
if v is unvisited
Q.Enqueue(v)
$\operatorname{Pred}[v]=u$
Level[v$]=$ Level[u$]+1$

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that all edges go between V_{1} and V_{2}
- A graph is bipartite if it can be two colored

Breadth first search

- Explore vertices in layers
- s in layer 1
- Neighbors of s in layer 2
- Neighbors of layer 2 in layer $3 \ldots$

Key observation: BFS Levels

- All edges go between vertices on the same level or adjacent levels

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

A graph is bipartite if and only if it has no odd cycles

Breadth First Search

- All edges go between vertices on the same layer or adjacent layers

Depth First Search

- Each edge goes between, vertices on the same branch
- No cross edges

Connected Components

- Undirected Graphs

Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Strongly connected components can be found in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in $O(n+m)$ time

Computing Connected Components in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

The Shortest Path Problem

Given a graph G, and vertices s and t in G, find the shortest path from s to t.

Two cases: weighted and unweighted.
For a path $p=v_{0} v_{1} v_{2} \ldots v_{k}$

- unweighted length of path $p=k \quad$ (length)
- weighted length of path $p=\sum_{i=0 . . k-1} c_{i, i+1}$ (cost)

1/30/2022
CSE 332

Variations of SSSP

- Weighted vs unweighted
- Directed vs undirected
- Cyclic vs acyclic
- Positive weights only vs negative weights allowed
- Shortest path vs longest path
- ...

SSSP: Unweighted Version

11/30/2022
CSE 332

Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
- ...

SSSP: Unweighted Version

Dijkstra's Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:

- Known
- shortest distance is already known
- Unknown
- Have tentative distance

Dijkstra's Algorithm: Pseudocode

Initialize the cost of each node to ∞
Initialize the cost of the source to 0
While there are unknown vertices left in the graph
Select an unknown vertex \boldsymbol{a} with the lowest cost
Mark \boldsymbol{a} as known
For each vertex \boldsymbol{b} adjacent to \boldsymbol{a}
newcost $=\operatorname{cost}(\mathbf{a})+\operatorname{cost}(\mathbf{a}, \mathbf{b})$
if (newcost < cost(b)) $\operatorname{cost}(\mathbf{b})=$ newcost previous(b) =a

Dijkstra's Algorithm: Idea

Important Features

- Once a vertex is known, the cost of the shortest path to that vertex is known
- While a vertex is still unknown, another shorter path to it might still be found
- The shortest path can found by following the previous pointers stored at each vertex

Dijkstra's Algorithm: Summary

- Classic algorithm for solving SSSP in weighted graphs without negative weights
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Why does it work?

Dijkstra's Alg: Implementation

Initialize the cost of each vertex to ∞
Initialize the cost of the source to 0
While there are unknown vertices left in the graph
Select the unknown vertex \boldsymbol{a} with the lowest cost
Mark \boldsymbol{a} as known
For each vertex \boldsymbol{b} adjacent to \boldsymbol{a}
newcost $=\min (\operatorname{cost}(\boldsymbol{b}), \operatorname{cost}(\boldsymbol{a})+\operatorname{cost}(\boldsymbol{a}, \boldsymbol{b}))$
if newcost < cost(b)
$\operatorname{cost}(\boldsymbol{b})=$ newcost
previous $(\boldsymbol{b})=a$

What data structures should we use?
Running time?

Continuation

- I don't expect to get close to this on Wednesday
- I do not plan on giving the correctness proof - you will need to wait for 421 . I might wave my hands a bit on the general ideas for the proof
- Assuming I have time on Friday, I am going to talk more about the use of heaps in Dijkstra's algorithm, as this is a data structures course

