
1

CSE 332: Data Structures and
Parallelism

Fall 2022
Richard Anderson

Lecture 25: Graph Traversal and
Shortest Paths and Other Algorithms

11/30/2022 CSE 332 1

Announcements

• Lectures

– Intro to graphs

– Topological Sort

– Parallelism and Concurrency (6 lectures)

– Graph Algorithms

• Graph Traversal

• Shortest Paths

• Minimum Spanning Tree

– Theory of NP-Completeness (2 lectures)

11/30/2022 CSE 332 2

Graph Theory

• G = (V, E)
– V: vertices, |V|= n
– E: edges, |E| = m

• Undirected graphs
– Edges sets of two vertices

{u, v}
• Directed graphs

– Edges ordered pairs (u, v)
• Many other flavors

– Edge / vertices weights
– Parallel edges
– Self loops

• Path: v1, v2, …, vk, with (vi, vi+1)E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted

11/30/2022 CSE 332 3

Graph Representation

a
b

c
d

V = { a, b, c, d}

E = { {a, b}, {a, c}, {a, d}, {b, d} }

a

b

c

d

b c d

a d

a

a b

1 1 1

1 0 1

1 0 0

1 1 0

Adjacency MatrixAdjacency List

O(n + m) space O(n2) space

11/30/2022 CSE 332 4

Topological Sort

11/30/2022 CSE 332 5

while there is a vertex v with in-degree 0 {

output v

remove v from G

}

E

F

D

A

C

B
K

J
G

H
I

L

Graph search

• Find a path from s to t

S = {s}

while S is not empty

u = Select(S)

visit u

foreach v in N(u)

if v is unvisited

Add(S, v)

Pred[v] = u

if (v == t) then path found

11/30/2022 CSE 332 6

2

Graph Search

s

t

11/30/2022 CSE 332 7

Breadth first search

• Explore vertices in layers

– s in layer 1

– Neighbors of s in layer 2

– Neighbors of layer 2 in layer 3 . . .

s

11/30/2022 CSE 332 8

Breadth First Search

• Build a BFS tree from s
Q = {s}

Level[s] = 1;

while Q is not empty

u = Q.Dequeue()

visit u

foreach v in N(u)

if v is unvisited

Q.Enqueue(v)

Pred[v] = u

Level[v] = Level[u] + 1

11/30/2022 CSE 332 9

Key observation: BFS Levels

• All edges go between vertices on the same
level or adjacent levels

2

8

3

7654

1

11/30/2022 CSE 332 10

Bipartite Graphs

• A graph V is bipartite if V can be partitioned
into V1, V2 such that all edges go between V1

and V2

• A graph is bipartite if it can be two colored

11/30/2022 CSE 332 11

Can this graph be two colored?

11/30/2022 CSE 332 12

3

Algorithm

• Run BFS

• Color odd layers red, even layers blue

• If no edges between the same layer, the graph
is bipartite

• If edge between two vertices of the same
layer, then there is an odd cycle, and the
graph is not bipartite

11/30/2022 CSE 332 13

A graph is bipartite if and only if it has
no odd cycles

11/30/2022 CSE 332 14

Graph Search

• Data structure for next vertex to visit
determines search order

11/30/2022 CSE 332 15

Graph search

Breadth First Search

S = {s}

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)

Depth First Search

S = {s}

while S is not empty

u = Pop(S)

if u is unvisited

visit u

foreach v in N(u)

Push(S, v)

11/30/2022 CSE 332 16

Breadth First Search

• All edges go between vertices on the same
layer or adjacent layers

2

8

3

7654

1

11/30/2022 CSE 332 17

Depth First Search

• Each edge goes between
vertices on the same
branch

• No cross edges

1

2

5

6

12743

8 9

10 11

11/30/2022 CSE 332 18

4

Connected Components

• Undirected Graphs

11/30/2022 CSE 332 19

Computing Connected Components in
O(n+m) time

• A search algorithm from a vertex v can find all
vertices in v’s component

• While there is an unvisited vertex v, search
from v to find a new component

11/30/2022 CSE 332 20

Directed Graphs

• A Strongly Connected Component is a subset
of the vertices with paths between every pair
of vertices.

11/30/2022 CSE 332 21

Identify the Strongly Connected
Components

11/30/2022 CSE 332 22

Strongly connected components can be
found in O(n+m) time

• But it’s tricky!

• Simpler problem: given a vertex v, compute the
vertices in v’s scc in O(n+m) time

11/30/2022 CSE 332 23

Paths and connectivity

11/30/2022 CSE 332 24

5

The Shortest Path Problem
Given a graph G, and vertices s and t in G, find the
shortest path from s to t.

Two cases: weighted and unweighted.

For a path p = v0 v1 v2 … vk

– unweighted length of path p = k (length)

– weighted length of path p = i=0..k-1 ci,i+1 (cost)

11/30/2022 CSE 332 25

Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest
paths from s to all vertices in G.

– How much harder is this than finding single shortest
path from s to t?

11/30/2022 CSE 332 26

Variations of SSSP

– Weighted vs unweighted

– Directed vs undirected

– Cyclic vs acyclic

– Positive weights only vs negative weights allowed

– Shortest path vs longest path

– …

11/30/2022 CSE 332 27

Applications

– Network routing

– Driving directions

– Cheap flight tickets

– Critical paths in project management
(see textbook)

– …

11/30/2022 CSE 332 28

SSSP: Unweighted Version

11/30/2022 CSE 332 29

void UnweightedGraphSearch(Vertex s){

Queue q(NUM_VERTICES);

Vertex v, w;

q.enqueue(s);

s.dist = 0;

while (!q.isEmpty()){

v = q.dequeue();

for each w adjacent to v

if (w.dist == INFINITY){

w.dist = v.dist + 1;

w.prev = v;

q.enqueue(w);

}

}

}

each edge examined
at most once – if adjacency
lists are used

each vertex enqueued
at most once

total running time: O()

11/30/2022 CSE 332 30

6

v3

v6

v1

v2 v4

v5

v0
s

11/30/2022 CSE 332 31

V Dist prev

v0

v1

v2

v3

v4

v5

v6

Weighted SSSP:
All edges are not created equal

Vending Machine in EE1

ALLEN
HUB

Delfino’s

Ben & Jerry’s

Neelam’sCedars

Coke Closet

Home

Schultzy’s

Parent’s Home

Café Allegro

1
0

The Ave

U Village

350

375

40

25

35
15

25

15,356

35

285
75

70
365

350

Can we calculate shortest distance to all vertices from Allen Center?

11/30/2022 CSE 332 32

Dijkstra’s Algorithm: Idea

Adapt BFS to handle weighted
graphs

Two kinds of vertices:
– Known

• shortest distance
is already known

– Unknown

• Have tentative distance

11/30/2022 CSE 332 33

Dijkstra’s Algorithm: Idea

At each step:

1) Pick closest unknown
vertex

2) Add it to known vertices

3) Update distances

11/30/2022 CSE 332 34

Dijkstra’s Algorithm: Pseudocode
Initialize the cost of each node to
Initialize the cost of the source to 0

While there are unknown vertices left in the graph
Select an unknown vertex a with the lowest cost
Mark a as known
For each vertex b adjacent to a

newcost = cost(a) + cost(a,b)
if (newcost < cost(b))

cost(b) = newcost
previous(b) = a

11/30/2022 CSE 332 35

Important Features

• Once a vertex is known, the cost of the shortest path
to that vertex is known

• While a vertex is still unknown, another shorter path
to it might still be found

• The shortest path can found by following the
previous pointers stored at each vertex

11/30/2022 CSE 332 36

7

v3

v6

v1

v2
v4

v5

v0
s

1

2

2

2

1

1 1

5 3

5

6

10

V Known? Cost Previous

v0

v1

v2

v3

v4

v5

v6 11/30/2022 CSE 332 37

Dijkstra’s Alg: Implementation
Initialize the cost of each vertex to

Initialize the cost of the source to 0

While there are unknown vertices left in the graph

Select the unknown vertex a with the lowest cost

Mark a as known

For each vertex b adjacent to a

newcost = min(cost(b), cost(a) + cost(a, b))

if newcost < cost(b)

cost(b) = newcost

previous(b) = a

What data structures should we use?

Running time?11/30/2022 CSE 332 38

Dijkstra’s Algorithm: Summary

• Classic algorithm for solving SSSP in weighted graphs
without negative weights

• A greedy algorithm (irrevocably makes decisions
without considering future consequences)

• Why does it work?

11/30/2022 CSE 332 39

Continuation

• I don’t expect to get close to this on
Wednesday

– I do not plan on giving the correctness proof – you
will need to wait for 421. I might wave my hands
a bit on the general ideas for the proof

– Assuming I have time on Friday, I am going to talk
more about the use of heaps in Dijkstra’s
algorithm, as this is a data structures course

11/30/2022 CSE 332 40

