
1

CSE 332: Data Structures and
Parallelism

Fall 2022

Richard Anderson

Lecture 23: Concurrency and Locks

11/23/2022 CSE 332 1

Announcements

• Today and Monday – Concurrency

• Project 3 Checkpoint, Thursday

11/23/2022 CSE 332 2

Really sharing memory between
Threads

Heap for all objects
and static fields, shared

by all threads
2 Threads, each with own unshared
call stack and “program counter”

pc=0x…

…

pc=0x…

…

11/23/2022 CSE 332 3

Good sharing

11/23/2022 CSE 332 4

class SumTask extends RecursiveTask<Integer> {
int lo; int hi; int[] arr;

SumTask(int[] a, int l, int h) { … }
protected Integer compute(){

if(hi – lo < SEQUENTIAL_CUTOFF) {
int ans = 0;
for (int i=lo; i < hi; i++)

ans += arr[i];
return ans;

}
else {

SumTask left = new SumTask(arr,lo,(hi+lo)/2);
SumTask right= new SumTask(arr,(hi+lo)/2,hi);

left.fork();
int rightAns = right.compute();
int leftAns = left.join();

return leftAns + rightAns;
}

}
}

static final ForkJoinPool POOL = new ForkJoinPool();

int sum(int[] arr){
SumTask task = new SumTask(arr,0,arr.length)
return POOL.invoke(task);

}

Banking
•Two threads both trying to withdraw(100) from the same account:

•Assume initial balance 150

class BankAccount {

private int balance = 0;

int getBalance() { return balance; }

void setBalance(int x) { balance = x; }

void withdraw(int amount) {

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

}

… // other operations like deposit, etc.

}

x.withdraw(100);

Thread 1

x.withdraw(100);

Thread 2

11/23/2022 CSE 332 5

A bad interleaving
• Interleaved withdraw(100) calls on the same account

– Assume initial balance== 150

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

11/23/2022 CSE 332 6

2

How to fix?

•No way to fix by rewriting the program
– can always find a bad interleaving ->

violation
– need some kind of synchronization

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

11/23/2022 CSE 332 7

Race Conditions

A race condition: program executes incorrectly due to

unexpected order of threads

data race:

- two threads write a variable at the same time

- one thread writes, another reads simultaneously

bad interleaving: wrong result due to unexpected
interleaving of statements in two or more threads

11/23/2022 CSE 332 8

Concurrency

Concurrency:

Correctly and efficiently managing access to shared

resources from multiple possibly-simultaneous clients

Requires coordination
synchronization to avoid incorrect simultaneous access:

make others block (wait) until the resource is free

Concurrent applications are often non-deterministic
how threads are scheduled affects what operations happen first

non-repeatability complicates testing and debugging

must work for all possible interleavings!!

11/23/2022 CSE 332 9

Concurrency Examples

• Bank Accounts

• Airline/hotel reservations

• Wikipedia

• Facebook

• Databases

11/23/2022 CSE 332 10

Locks

• Allow access by at most one thread at a time

– “mutual exclusion”

– make others block (wait) until the resource is free

– called a mutual-exclusion lock or just lock, for short

• Critical sections

– code that requires mutual exclusion

– defined by the programmer (compiler can’t figure this out)

11/23/2022 CSE 332 11

Lock ADT

We define Lock as an ADT with operations:
– new: make a new lock, initially “not held”

– acquire: blocks if this lock is already currently “held”

• Once “not held”, makes lock “held” (one thread gets it)

– release: makes this lock “not held”

• If >= 1 threads are blocked on it, exactly 1 will acquire it

Allow access to at most one thread at a time

How can this be implemented?

– acquire (check “not held” -> make “held”) cannot be interrupted

– special hardware and operating system-level support

11/23/2022 CSE 332 12

3

Basic idea (note Lock is not an actual Java class)

class BankAccount {

private int balance = 0;

private Lock lk = new Lock();

…

void withdraw(int amount) {

lk.acquire(); // may block

int b = getBalance();

if(amount > b){

lk.release();

throw new WithdrawTooLargeException();

}

setBalance(b – amount);

lk.release();

}

// deposit would also acquire/release lk

}
11/23/2022 CSE 332 13

Common Mistakes

• Forgetting to release locks

– Multiple paths of control, e.g., because of Throws (previous

slide)

• Too few locks
– e.g., all bank accounts share a single lock

• Too many locks

– separate locks for deposit, withdraw

11/23/2022 CSE 332 14

What Do We Lock?

• Class
– e.g., all bank accounts?

• Object

– e.g., a particular account?

• Field

– e.g., balance

• Code fragment

– e.g., withdraw

11/23/2022 CSE 332 15

Synchronized: Locks in Java

Java has built-in support for locks

1. expression evaluates to an object

• Any object (but not primitive types) can be a lock in Java

2. Acquires the lock, blocking if necessary

• If you get past the {, you have the lock

3. Releases the lock at the matching }

• even if control leaves due to throw, return, etc.

• so impossible to forget to release the lock

synchronized (expression) {

statements

}

11/23/2022 CSE 332 16

BankAccount in Java

class BankAccount {

private int balance = 0;

private Object lk = new Object();

int getBalance()

{ synchronized (lk) { return balance; } }

void setBalance(int x)

{ synchronized (lk) { balance = x; } }

void withdraw(int amount) {

synchronized (lk) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

}

}

// deposit would also use synchronized(lk)

}

11/23/2022 CSE 332 17

Usually simplest to use the class object itself as the lock

synchronized (this) {

statements

}

synchronized {

statements

}

This is so common that Java provides a shorthand:

Shorthand

11/23/2022 CSE 332 18

4

class BankAccount {

private int balance = 0;

synchronized int getBalance()

{ return balance; }

synchronized void setBalance(int x)

{ balance = x; }

synchronized void withdraw(int amount) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

}

// deposit would also use synchronized

}

Final Version

11/23/2022 CSE 332 19

Stack Example

class Stack<E> {

private E[] array = (E[])new Object[SIZE];

int index = -1;

boolean isEmpty() {

return index==-1;

}

void push(E val) {

array[++index] = val;

}

E pop() {

if(isEmpty())

throw new StackEmptyException();

return array[index--];

}

}

11/23/2022 CSE 332 20

Why Wrong?

• IsEmpty and push are one-liners. What can go wrong?

– ans: one line, but multiple operations

– array[++index] = val probably takes at least two ops

– data race if two pushes happen simultaneously

11/23/2022 CSE 332 21

Stack Example (fixed)

class Stack<E> {

private E[] array = (E[])new Object[SIZE];

int index = -1;

synchronized boolean isEmpty() {

return index==-1;

}

synchronized void push(E val) {

array[++index] = val;

}

synchronized E pop() {

if(isEmpty())

throw new StackEmptyException();

return array[index--];

}

}

11/23/2022 CSE 332 22

Lock everything? No.

• For every memory location (e.g., object field), obey at

least one of the following:

1. Thread-local: only one thread sees it

2. Immutable: read-only

3. Shared-and-mutable: control access via a lock

–

all memory thread-local
memory

immutable
memory

need
synchronization

11/23/2022 CSE 332 23

Thread local

• Whenever possible, do not share resources

– easier to give each thread its own local copy

– only works if threads don’t need to communicate via resource

• In typical concurrent programs, the vast majority of objects should
be thread local: shared memory should be rare—minimize it

11/23/2022 CSE 332 24

5

Immutable

• If location is read-only, no synchronizatin is necessary

• Whenever possible, do not update objects

– make new objects instead!

– one of the key tenets of functional programming (CSE 341)

• In practice, programmers usually over-use mutation –

minimize it

11/23/2022 CSE 332 25

The rest: keep it synchronized

11/23/2022 CSE 332 26

• Java provides many other features and details. See, for
example:

– Chapter 14 of CoreJava, Volume 1 by Horstmann/Cornell

– Java Concurrency in Practice by Goetz et al

Other Forms of Locking in Java

11/23/2022 CSE 332 27

Recall Bank Account Problem
class BankAccount {

private int balance = 0;

synchronized int getBalance()

{ return balance; }

synchronized void setBalance(int x)

{ balance = x; }

synchronized void withdraw(int amount) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

}

// deposit would also use synchronized

}

Call to setBalance in withdraw

- tries to lock this
11/23/2022 CSE 332 28

Re-Entrant Lock

• A re-entrant lock (a.k.a. recursive lock)

- If a thread holds a lock, subsequent attempts to acquire the
same lock in the same thread won’t block

- withdraw can acquire the lock and setBalance can also

acquire it

- implemented by maintaining a count of how many times

each lock is acquired in each thread, and decrementing the

count on each release.

• Java synchronize locks are re-entrant

11/23/2022 CSE 332 29

Locking Guidelines

• Correctness

• Consistency: make it w ell-defined

• Granularity: coarse to f ine

• Critical Sections: make them small, atomic

• Leverage libraries

11/23/2022 CSE 332 30

6

Consistent Locking

• Clear mapping of locks to resources

- followed by all methods

- clearly documented

- same lock can guard multiple resources

- what’s a resource? Conceptual:

- object

- field

- data structure (e.g., l inked list, hash table)11/23/2022 CSE 332 31

Lock Granularity

• Coarse grained: fewer locks, more objects per lock

- e.g., one lock for entire data structure (e.g., linked list)

- advantage:

- disadvantage:

• Fine grained: more locks, fewer objects per lock

- e.g., one lock for each item in the linked list

…

…

11/23/2022 CSE 332 32

Lock Granularity

•Example: hashtable with separate chaining

- coarse grained: one lock for whole table

- fine grained: one lock for each bucket

•Which supports more concurrency for insert and

lookup?

•Which makes implementing resize easier?

•Suppose hashtable maintains a numElements field. Which

locking approach is better?

11/23/2022 CSE 332 33

Critical Sections

• Critical sections:

- how much code executes while you hold the lock?

- want critical sections to be short

- make them “atomic”: think about smallest sequence of

operations that have to occur at once (without data races,
interleavings)

11/23/2022 CSE 332 34

Critical Sections

• Suppose we want to change a value in a hash table

- assume one lock for the entire table

- computing the new value takes a long time (“expensive”)

synchronized(lock) {

v1 = table.lookup(k);

v2 = expensive(v1);

table.remove(k);

table.insert(k,v2);

}

11/23/2022 CSE 332 35

synchronized(lock) {

v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lock) {

table.remove(k);

table.insert(k,v2);

}

Critical Sections

• Suppose we want to change a value in the hash table

- assume one lock for the entire table

- computing the new value takes a long time (“expensive”)

- will this work?

11/23/2022 CSE 332 36

7

• Suppose we want to change a value in the hash table

- assume one lock for the entire table

- computing the new value takes a long time (“expensive”)

- convoluted fix:

Critical Sections

37

done = false;

while(!done) {

synchronized(lock) {

v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lock) {

if(table.lookup(k)==v1) {

done = true; // I can exit the loop!

table.remove(k);

table.insert(k,v2);

}}}
11/23/2022 CSE 332 37

