
1

CSE 332: Data Structures and
Parallelism

Spring 2022

Richard Anderson

Lecture 22: Parallel Algorithms

11/21/2022 CSE 332 1

Announcements

• This week:

– Monday: Parallel Sorting

– Wednesday: Concurrency

– Friday: Holiday

– Monday: Concurrency

11/21/2022 CSE 332 2

Data Parallel Programming

• Programming primitives for operating on
Arrays
– Reduce: Combine array elements with an

operator, e.g., +.

– Map: Apply an operation to every element, e.g.,

multiply by two

– Prefix sum: Compute all partial sums

– Pack: Shift all values satisfying a predicate to start

of the array

11/21/2022 CSE 332 3

Parallel Prefix

• Prefix-sum:

• output[𝑗+1] = σ𝑖=0
𝑗

input[𝑖]

• Fork Join Implementation
• O(n) work, O(log n) span

input

output 0 6 9 20 30 38 40 47

6 3 11 10 8 2 7 8

11/21/2022 CSE 332 4

55

First Pass: Sum

Sum [0,7]:

Sum [0,3]: Sum [4,7]:

Sum [0,1]: Sum [2,3]: Sum [4,5]: Sum [5,7]:

6 3 11 10 8 2 7 8

11/21/2022 CSE 332 5

sum = left.sum + right.sum

2nd Pass: Use Sum for Prefix-Sum

11/21/2022 CSE 332 6

Sum [0,7]: 55

Sum<0: 0

Sum [0,3]: 30

Sum<0: 0

Sum [4,7]: 25

Sum<4:

Sum [0,1]: 9

Sum<0: 0

Sum [2,3]: 21

Sum<2:

Sum [4,5]: 10

Sum<4:

Sum [6,7]: 15

Sum<6:

6 3 11 10 8 2 7 8

left.fromLeft = fromLeft right.fromLeft =
fromLeft + left.sum

2

Parallel Prefix, Generalized

• Parallel Prefix can be generalized to many operators

• Example: Sum by group

11/21/2022 CSE 332 7

6 9 * 10 18 20 * 8

6 3 * 10 8 2 * 8

14 17 * * 8 10 * 8

6 3 * * 8 2 * 8

A ● B = A + B

A ● * = *

* ● B = B

* ● * = *

A ● B = A + B

A ● B = B

A ● B = B

A ● * = *

* ● B = B

Parallel Pack

input

test 0 1 1 0 0 1 1 0

6 3 11 10 8 2 7 8

1. map test input, output [0,1] bit vector IsPrime(x) ?

2. prefix-sum on bit vector

0 1 2 2 2 3 4 4

3. map input to corresponding positions in output

pos

3 11 2 7 13 23 5

- if (test[i] == 1) output[pos[i]] = input[i]

output

11/21/2022 CSE 332 8

13 4 23 5

1 0 1 1

5 5 6 7

Parallel Algorithms

• TP is the running time on P processors

• Work: How long it would take one

processor: T1

• Span: How long it would take with infinite

processors: T

• Goal: parallel algorithm with TP≈T1/P

• Assume P << n

11/21/2022 CSE 332 9

Parallel Sorting

• Goal: O(n log n) work, O(log n) span

– We will achieve O(n log n) work, O (log2 n) span

• Look at parallel versions of Quicksort and
Mergesort

11/21/2022 CSE 332 10

QS(S)

if |S| < SeqCutoff

return Sort(S)

x = Pivot(S)

S1, S2 = Partition(S, x)

return QS(S1), QS(S2)

MS

if |S| < SeqCutoff

return Sort(S)

S1, S2 = Split(S)

S1 = MS(S1); S2 = MS(S2)

return Merge(S1, S2)

Sequential Quicksort

• Quicksort (review):

1.Pick a pivot O(1)

2.Partition into two sub-arrays O(n)

A. values less than pivot

B. values greater than pivot

3.Recursively sort A and B 2T(n/2) Sort of

• Complexity
– T(n) = n + 2T(n/2) T(0) = T(1) = 1

– O(n logn)

• How to parallelize?
11/21/2022 CSE 332 11

Avoiding bad cases for quicksort

• Quicksort can be (n2) with bad pivot choices

• If input is random then Quicksort is O(n log n)
with high probability

• If pivots are random then Quicksort is O(n log
n) with high probability

• Pick 5 elements at random, choose the
middle as a pivot

11/21/2022 CSE 332 12

3

Parallel Quicksort

• Quicksort

1. Pick a pivot O(1)

2. Partition into two sub-arrays O(n)

A. values less than pivot

B. values greater than pivot

3. Recursively sort A and B in parallel T(n/2), sort of

• Complexity (avg case)

– T(n) = n + T(n/2) T(0) = T(1) = 1

– Span: O()

– Parallelism (work/span) = O()

11/21/2022 CSE 332 13

Parallel Partition

• Partition into sub-arrays

A. values less than pivot

B. values greater than pivot

• What parallel operation can w e use for this?

11/21/2022 CSE 332 14

Parallel Partition

• Pick pivot

• Pack (test: <6)

• Right pack (test: >=6)

8 1 4 9 0 3 5 2 7 6

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

11/21/2022 CSE 332 15
16

Parallel Quicksort

• Quicksort

1. Pick a pivot O(1)

2. Partition into two sub-arrays O() span

A. values less than pivot

B. values greater than pivot

3. Recursively sort A and B in parallel T(n/2), avg

• Complexity (avg case)

– T(n) = O() + T(n/2) T(0) = T(1) = 1

– Span: O()

– Parallelism (work/span) = O()

11/21/2022 CSE 332 16

Implementation

• Recommend random selection of pivot

• Choose sequential cutoff
– Change over to sequential quick sort

• Constant factors in partitioning are higher for
the parallel version

11/21/2022 CSE 332 17

Sequential Mergesort

• Mergesort (review):

1.Sort left and right halves 2T(n/2)

2.Merge results O(n)

• Complexity (w orst case)
– T(n) = n + 2T(n/2) T(0) = T(1) = 1

– O(n logn)

• How to parallelize?
– Do left + right in parallel, improves to O(n)

– To do better, we need to…

11/21/2022 CSE 332 18

4

Parallel Mergesort

• MergeSort(Arr, lo, hi)

– Threads to compute MS(Arr, lo, mid), MS(Arr, mid, hi)

– Merge Arr[lo,mid] and Arr[mid,hi] into Arr[lo,hi]

• Can stop at a sequential cut off

11/21/2022 CSE 332 19

Parallel Merge

• How to merge tw o sorted lists in parallel?

0 4 6 8 9 1 2 3 5 7

11/21/2022 CSE 332 20

Parallel Merge

11/21/2022 CSE 332 21

Parallel Merge:
n items with p threads

• Each thread needs to know where to start in
the two arrays being merged

• If starting points are given, select the next n/p
items

• Finding the starting points can be done in
O(log n) time using a modified binary search

11/21/2022 CSE 332 22

Finding the starting point

• Given two sorted arrays A, B, find the item of
rank k in the combined arrays

• Compare A[k/2] and B[k/2]

– If A[k/2] < B[k/2] discard first k/2 items of A,
otherwise discard first k/2 items of B

• Look for item of rank k/2 in remaining items

• Logarithmic process

11/21/2022 CSE 332 23

Parallel Quicksort and Mergesort

• Both algorithms can be implemented as
efficient parallel algorithms

• With p processors, a speedup of p is
achievable provided p << n

• Speedup comes from:
– Doing much of the work on sorting items below

the sequential cutoff

– Taking advantage of parallelism in the combine
steps to avoid a sequential bottleneck,

11/21/2022 CSE 332 24

