CSE 332: Data Structures and Parallelism

Spring 2022

Richard Anderson

Lecture 22: Parallel Algorithms

Announcements

- This week:
 - Monday: Parallel Sorting
 - Wednesday: Concurrency
 - Friday: Holiday
 - Monday: Concurrency

Data Parallel Programming

- Programming primitives for operating on Arrays
 - Reduce: Combine array elements with an operator, e.g., +.
 - Map: Apply an operation to every element, e.g., multiply by two
 - Prefix sum: Compute all partial sums
 - Pack: Shift all values satisfying a predicate to start of the array

Parallel Prefix

Prefix-sum:

input	6	3	11	10	8	2	7	8	
output	0	6	9	20	30	38	40	47	55

- output $[j+1] = \sum_{i=0}^{j} input[i]$
- Fork Join Implementation
- O(n) work, O(log n) span

First Pass: Sum

sum = left.sum + right.sum

2nd Pass: Use Sum for Prefix-Sum

Parallel Prefix, Generalized

- Parallel Prefix can be generalized to many operators
- Example: Sum by group

6	3	*	10	8	2	*	8	6	3	*	*	8	2	*	8
6	9	*	10	18	20	*	8	14	17	*	*	8	10	*	8

$$A \bullet B = A + B$$

$$\underline{A} \bullet B = \underline{A + B}$$

*
$$\bullet$$
 $\underline{B} = \underline{B}$

$$A \bullet \underline{B} = \underline{B}$$

$$\underline{A} \bullet \underline{B} = \underline{B}$$

11/21/2022

Parallel Pack

1. map test input, output [0,1] bit vector

IsPrime(x) ?

2. prefix-sum on bit vector

3. map input to corresponding positions in output

- if (test[i] == 1) output[pos[i]] = input[i]

Parallel Algorithms

- T_P is the running time on P processors
- Work: How long it would take one processor: T₁
- Span: How long it would take with infinite processors: T_∞
- Goal: parallel algorithm with T_P≈T₁/P
- Assume P << n

Parallel Sorting

- Goal: O(n log n) work, O(log n) span
 - We will achieve O(n log n) work, O (log² n) span
- Look at parallel versions of Quicksort and Mergesort

```
QS(S)

if |S| < SeqCutoff
    return Sort(S)

x = Pivot(S)

S1, S2 = Partition(S, x)

return QS(S1), QS(S2)</pre>

MS

if |S| < SeqCutoff
    return Sort(S)

S1, S2 = Split(S)

S1 = MS(S1); S2 = MS(S2)

return Merge(S1, S2)
```

Sequential Quicksort

- Quicksort (review):
 - 1. Pick a pivot
 - 2. Partition into two sub-arrays
 - A. values less than pivot
 - B. values greater than pivot
 - 3. Recursively sort A and B

2T(n/2) Sort of

O(1)

O(n)

- Complexity
 - T(n) = n + 2T(n/2)

$$T(0) = T(1) = 1$$

- O(n logn)
- How to parallelize?

Avoiding bad cases for quicksort

- Quicksort can be $\Omega(n^2)$ with bad pivot choices
- If input is random then Quicksort is O(n log n) with high probability
- If pivots are random then Quicksort is O(n log n) with high probability
- Pick 5 elements at random, choose the middle as a pivot

Parallel Quicksort

- Quicksort
 - 1. Pick a pivot O(1)
 - 2. Partition into two sub-arrays O(n)
 - A. values less than pivot
 - B. values greater than pivot
 - 3. Recursively sort A and B in parallel
- T(n/2), sort of

- Complexity (avg case)
 - T(n) = n + T(n/2) T(0) = T(1) = 1
 - Span: O()
 - Parallelism (work/span) = O()

Parallel Partition

- Partition into sub-arrays
 - A. values less than pivot
 - B. values greater than pivot

What parallel operation can we use for this?

Parallel Partition

Pick pivot

Pack (test: <6)

Right pack (test: >=6)

Parallel Quicksort

- Quicksort
 - 1. Pick a pivot O(1)
 - 2. Partition into two sub-arrays O() span
 - A. values less than pivot
 - B. values greater than pivot
 - 3. Recursively sort A and B in parallel T(n/2), avg
- Complexity (avg case)
 - T(n) = O() + T(n/2) T(0) = T(1) = 1
 - Span: O()
 - Parallelism (work/span) = O()

Implementation

- Recommend random selection of pivot
- Choose sequential cutoff
 - Change over to sequential quick sort
- Constant factors in partitioning are higher for the parallel version

Sequential Mergesort

- Mergesort (review):
 - 1. Sort left and right halves
 - 2. Merge results

- 2T(n/2)
 - O(n)

- Complexity (worst case)
 - T(n) = n + 2T(n/2) T(0) = T(1) = 1

$$T(0) = T(1) = 1$$

- O(n logn)
- How to parallelize?
 - Do left + right in parallel, improves to O(n)
 - To do better, we need to...

Parallel Mergesort

- MergeSort(Arr, lo, hi)
 - Threads to compute MS(Arr, lo, mid), MS(Arr, mid, hi)
 - Merge Arr[lo,mid] and Arr[mid,hi] into Arr[lo,hi]

Can stop at a sequential cut off

Parallel Merge

How to merge two sorted lists in parallel?

Parallel Merge

Parallel Merge: n items with p threads

- Each thread needs to know where to start in the two arrays being merged
- If starting points are given, select the next n/p items

 Finding the starting points can be done in O(log n) time using a modified binary search

Finding the starting point

- Given two sorted arrays A, B, find the item of rank k in the combined arrays
- Compare A[k/2] and B[k/2]
 - If A[k/2] < B[k/2] discard first k/2 items of A,
 otherwise discard first k/2 items of B
- Look for item of rank k/2 in remaining items
- Logarithmic process

Parallel Quicksort and Mergesort

- Both algorithms can be implemented as efficient parallel algorithms
- With p processors, a speedup of p is achievable provided p << n
- Speedup comes from:
 - Doing much of the work on sorting items below the sequential cutoff
 - Taking advantage of parallelism in the combine steps to avoid a sequential bottleneck,