CSE 332: Data Structures and Parallelism

Spring 2022

Richard Anderson
Lecture 22: Parallel Algorithms

Announcements

- This week:
- Monday: Parallel Sorting
- Wednesday: Concurrency
- Friday: Holiday
- Monday: Concurrency

Data Parallel Programming

- Programming primitives for operating on Arrays
- Reduce: Combine array elements with an operator, e.g., + .
- Map: Apply an operation to every element, e.g., multiply by two
- Prefix sum: Compute all partial sums
- Pack: Shift all values satisfying a predicate to start of the array

Parallel Prefix

- Prefix-sum:

- output $[j+1]=\sum_{i=0}^{j} \operatorname{input}[i]$
- Fork Join Implementation
- O(n) work, O(log n) span

First Pass: Sum

sum $=$ left.sum + right.sum

2nd Pass: Use Sum for Prefix-Sum

Parallel Prefix, Generalized

- Parallel Prefix can be generalized to many operators
- Example: Sum by group

6	3	$*$	10	8	2	$*$	8	6	3	$*$	$*$	8	2	$*$	8
6	9	$*$	10	18	20	$*$	8	14	17	${ }^{*}$	$*$	${ }^{*}$	8	10	$*$

Parallel Pack

1. map test input, output $[0,1]$ bit vector

IsPrime(x) ?

2. prefix-sum on bit vector

3. map input to corresponding positions in output output

- if (test[i] == 1) output[pos[i]] = input[i]

Parallel Algorithms

- $\mathbf{T}_{\mathbf{P}}$ is the running time on \mathbf{P} processors
- Work: How long it would take one processor: T_{1}
- Span: How long it would take with infinite processors: T_{∞}
- Goal: parallel algorithm with $\mathrm{T}_{\mathrm{P}} \approx \mathrm{T}_{1} / \mathrm{P}$
- Assume P << n

Parallel Sorting

- Goal: O(n $\log \mathrm{n})$ work, $\mathrm{O}(\log \mathrm{n})$ span
- We will achieve O($n \log n$) work, $O\left(\log ^{2} n\right)$ span
- Look at parallel versions of Quicksort and Mergesort

```
QS (S)
    if |S| < SeqCutoff
        return Sort(S)
    x = Pivot(S)
    S1, S2 = Partition(S, x)
    return QS(S1), QS(S2)
```

MS

```
if |S| < SeqCutoff
    return Sort(S)
S1, S2 = Split(S)
S1 = MS (S1); S2 = MS (S2)
return Merge(S1, S2)
```


Sequential Quicksort

- Quicksort (review):

1. Pick a pivot
2. Partition into two sub-arrays
A. values less than pivot
B. values greater than pivot
3. Recursively sort A and B
$2 \mathrm{~T}(\mathrm{n} / 2)$ Sort of

- Complexity
- $\mathrm{T}(\mathrm{n})=\mathrm{n}+2 \mathrm{~T}(\mathrm{n} / 2) \quad \mathrm{T}(0)=\mathrm{T}(1)=1$
- O(n logn)
- How to parallelize?

Avoiding bad cases for quicksort

- Quicksort can be $\Omega\left(n^{2}\right)$ with bad pivot choices
- If input is random then Quicksort is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ with high probability
- If pivots are random then Quicksort is O(n log n) with high probability
- Pick 5 elements at random, choose the middle as a pivot

Parallel Quicksort

- Quicksort

1. Pick a pivot

O(1)
2. Partition into two sub-arrays
A. values less than pivot
B. values greater than pivot
3. Recursively sort A and B in parallel
$T(n / 2)$, sort of

- Complexity (avg case)
$-T(n)=n+T(n / 2) \quad T(0)=T(1)=1$
- Span: O()
- Parallelism (work/span) $=\mathrm{O}($

Parallel Partition

- Partition into sub-arrays
A. values less than pivot
B. values greater than pivot
- What parallel operation can we use for this?

Parallel Partition

- Pick pivot

8	1	4	9	0	3	5	2	7	6

- Pack (test: <6)

1	4	0	3	5	2				

- Right pack (test: >=6)

Parallel Quicksort

- Quicksort

1. Pick a pivot
2. Partition into two sub-arrays
A. values less than pivot
B. values greater than pivot
3. Recursively sort A and B in parallel
$T(n / 2)$, avg

- Complexity (avg case)
$-T(n)=O(\quad)+T(n / 2) \quad T(0)=T(1)=1$
- Span: O()
- Parallelism (work/span) $=\mathrm{O}($)
--

Implementation

- Recommend random selection of pivot
- Choose sequential cutoff
- Change over to sequential quick sort
- Constant factors in partitioning are higher for the parallel version

Sequential Mergesort

- Mergesort (review):

1. Sort left and right halves

2T(n/2)
2. Merge results
$\mathrm{O}(\mathrm{n})$

- Complexity (worst case)
$-T(n)=n+2 T(n / 2) \quad T(0)=T(1)=1$
- O(n logn)
- How to parallelize?
- Do left + right in parallel, improves to O(n)
- To do better, we need to...

Parallel Mergesort

- MergeSort(Arr, lo, hi)
- Threads to compute MS(Arr, lo, mid), MS(Arr, mid, hi)
- Merge Arr[lo,mid] and Arr[mid,hi] into Arr[lo,hi]
- Can stop at a sequential cut off

Parallel Merge

| 0 | 4 | 6 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- |\quad| 1 | 2 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- |

- How to merge two sorted lists in parallel?

Parallel Merge

Parallel Merge: n items with p threads

- Each thread needs to know where to start in the two arrays being merged
- If starting points are given, select the next n / p items
- Finding the starting points can be done in O(log n) time using a modified binary search

Finding the starting point

- Given two sorted arrays A, B, find the item of rank k in the combined arrays
- Compare $A[k / 2]$ and $B[k / 2]$
- If $A[k / 2]<B[k / 2]$ discard first $k / 2$ items of A, otherwise discard first $k / 2$ items of B
- Look for item of rank k/2 in remaining items
- Logarithmic process

Parallel Quicksort and Mergesort

- Both algorithms can be implemented as efficient parallel algorithms
- With p processors, a speedup of p is achievable provided p << n
- Speedup comes from:
- Doing much of the work on sorting items below the sequential cutoff
- Taking advantage of parallelism in the combine steps to avoid a sequential bottleneck,

