CSE 332: Data Structures and
Parallelism

Announcements

» Read parallel computing notes by Dan
Grossman 3.5-5.4

Recap

 Last lectures
— simple parallel programs
— fork-join/thread programming
— common patterns: reduce, map
— analysis tools (task graph, work, span, parallelism)

* Now
— Amdahl's Law
— useful building blocks: prefix, pack
— parallel quicksort, merge sort

Analyzing Parallel Programs

Let T, be the running time on P processors

Two key measures of run-time:
» Work: How long it would take 1 processor = T,
+ Span: How long it would take infinity processors = T,
— The hypothetical ideal for parallelization
— This is the longest “dependence chain” in the computation
— Example: O(1log n) for summing an array
— Also called “critical path length” or “computational depth”

Task Graph

A parallel program can be modelled as a directed

acyclic graph
9/6\9

9 ::
3 e

Work —T,, sum of times of all of the nodes

Span-T,, longest path

Parallel Speed-up
» Speed-up on P processors: T,/ Tp
« If speed-upis P, we call it perfect linear speed-up

— e.g., doubling P halves running time
— hard to achieve in practice

Parallelism is the maximum possible speed-up: T,/ T,
— if you had infinite processors

Estimating T,

* How to estimate T, ?

* Lower boundson T,
2T
T,>2T,/P
— which one is the tighter (higher) lower bound?

¢ The ForkJoin Java Framework achieves the following
asymptotic time bound:

Tp is O(T,+T,/P)

— this bound is optimal

Amdahl’s Law

Most programs have
1. parts that parallelize well
2. parts that don’t parallelize at all

The latter become bottlenecks

Amdahl’'s Law

¢ LetT, =1 unit of time
* LetS = proportion that can’t be parallelized

1=T,=S+(1-95)

* Suppose we get perfect linear speedup on the parallel portion:
Tp=

* So the overall speed-up on P processors is (Amdahl’s Law):

T, /Tp=

T/ Te=

* If 1/3 of your program is parallelizable, max speedup is:

Take Aways

Parallel algorithms can be a big win
Many fit standard patterns that are easy to implement

Can’t just rely on more processors to make things faster
(Amdahl’s Law)

Parallelizable?

¢ Prefix-sum:

input | 6

3|ll|10|8|2|7|8|
output |

* output[/] :Zfzoinput[i]

Parallel prefix-sum

The parallel-prefix algorithm does two passes
— Each pass has O(n) work and O(1og n) span
— So in total there is O(n) work and O(1og n) span
— So like with array summing, parallelism is n/1log n

First pass builds a tree bottom-up: the “up” pass

Second pass traverses the tree top-down: the
“down” pass

Parallel Prefix: The Up Pass

We build want to build a binary tree where
* Root has sum of the range [x,y)
* If a node has sum of [lo,hi) and hi>lo,
— Left child has sum of [lo,middle)
— Right child has sum of [middle,hi)
— A leaf has sum of [i,i+1), which is simply input[i]

It is critical that we actually create the tree as we will need it for the
down pass
* We do not need an actual linked structure

* We could use an array as we did with heaps
Analysis of first step: Work = Span =

csE

The algorithm, part 1

1. Propagate ‘sum’ up: Build a binary tree where
— Root has sum of input[0] . .input[n-1]
— Each node has sum of input[lo] . .input[hi-1]
* Build up from leaves; parent.sum=left.sum+right.sum
— Aleaf’s sumis justit’s value; input[i]

This is an easy fork-join computation: combine results by
actually building a binary tree with all the sums of ranges
— Tree built bottom-up in parallel
— Could be more clever; ex. Use an array as tree representation
like we did for heaps

Analysis of first step: O(n) work, O(1og n) span

Do an initial pass to gather

information, enabling us todo a
second pass to get the answer range 0,8
sum
/ fromleft \
First we'll gather
the ‘sum’ for each range 0,4 range 4,8
recursive block sum sum
fromleft fromleft
range 0,2 range 2,4 range 4,6 range 6,8
sum sum sum sum
fromleft fromleft fromleft fromleft

The algorithm, part 2

2. Propagate ‘fromleft’ down:
— Root given a fromLeft of 0
— Node takes its fromLeft value and
o Passes its left child the same fromLeft
. ;?sses its right child its fromLe£t plus its left child’s sum (as stored in part

— At the leaf for array position i,
output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)
— Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: O(n) work, O(1og n) span
Analysis of second step: O(n) work, O(1og n) span
Total for algorithm: O(n) work, O(1og n) span

s s s s s s
f f f f f f f f
input [6 4 16 | 10 | 16 14 2 8
output ‘
:
Using ‘sum’, get the
sum of everything to range 0,8
the left of this range sum 76
(call it ‘fromleft’); fromleft
propagate down from
Ieref range 0,4 range 4,8
sum 36 sum 40
fromleft fromleft
range 0,2 range 2,4 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft fromleft fromleft fromleft

e £

2 r23 r3,4 r 4,5 r56 r 8

r 0,

s 6 ||s 4 ||s 16 ||s 10 ||s 16 ||s 14 ||s 2 ||s s

f f f f f f f f
input [6 4 16 [10 [16 | 14 | 2 8

output ‘

First Pass: Sum

[Sum [4,7]

um [0,1] | um [2,3] | ISum [4,5] Sum [5,7]
I 1\ I\ I\ I 3
6 3 11 10 8 2 7 8

2nd Pass: use Sum for Prefix-Sum

A nodes computation

[Sum [0,7]: 55
[Sum<0: 0

Sum [0,3]: 30
[Sum<0: 0

sum [4,7]: 25

sum = left.sum + right.sum
um<4:

um [0,1]: 9 um [2,3]: 21 Sum [4,5]: 10 Sum [6,7]: 15 /'/
um<0: 0 um<2: [Sum<4: [Sum<6: ‘/'/
left.fromLeft = fromLeft right.fromLeft =
6 3 1 10 8 2 7 8 fromLeft + left.sum
19
=
Parallel Prefix, Generalized Pack
» Prefix-sum is another common pattern (prefix problems) . _Pactk:
— maximum element to the left of i =

|6|3|11|10|8|2|7|8| test: X < 8?
— is there an element to the left of i satisfying some property?
— count of elements to the left of i satisfying some property

output I

* We can solve all of these problems in the same way

« Output array of elements satisfying test, in original order

Parallel Pack? Parallel Pack
oPack 1. map test input, output [0,1] bit vector
input |6 3|11|10|8|2|7|8|test: X < 8? input |6|3|11|10|8|2|7|8|test: X < 8?
output 613|217 test

i1f1jofojoj1)1]o0

*Determining which elements to include is easy

*Determining where each element goes in outputis hard
— seems to depend on previous results

Parallel Pack

1. map test input, output [0,1] bit vector

input |6|3|11|10|8|2|7|8| test: X < 87

test 1 l1]lofo]o]21]1]o0

2. transform bit vector into array of indices into result array

]|

3

e [o]ef]]

Parallel Pack

1. map test input, output [0,1] bit vector

input |6|3|11|10|8|2|7|8| test: X < 82

test 1 l1]lofo]of1]1]o0

2. prefix-sum on bit vector

3

4]

3. map input to corresponding positions in output

JEEEEE

- if (test[i] == 1) output[pos[i]] = input[i]

S HEBRE

3

output | 6

Parallel Pack Analysis

« Parallel Pack

1. map: o() span
2. sum-prefix: O() span
3. map: o() span

e Total: O() span

