
1

CSE 332: Data Structures and
Parallelism

Spring 2022

Richard Anderson

Lecture 21: Parallel Algorithms

11/18/2022 CSE 332 1

Announcements

• Read parallel computing notes by Dan

Grossman 3.5-5.4

11/18/2022 CSE 332 2

Recap

• Last lectures

– simple parallel programs

– fork-join/thread programming

– common patterns: reduce, map

– analysis tools (task graph, work, span, parallelism)

• Now

– Amdahl’s Law

– useful building blocks: prefix, pack

– parallel quicksort, merge sort

11/18/2022 CSE 332 3

Analyzing Parallel Programs

Let TP be the running time on P processors

Two key measures of run-time:

• Work: How long it would take 1 processor = T1

• Span: How long it would take infinity processors = T

– The hypothetical ideal for parallelization

– This is the longest “dependence chain” in the computation

– Example: O(log n) for summing an array

– Also called “critical path length” or “computational depth”

11/18/2022 CSE 332 4

Task Graph

11/18/2022 CSE 332 5

3

2

22

11 11

4 4
4

3

2

22

11 11

4 4
4

A parallel program can be modelled as a directed
acyclic graph

Work – T1, sum of times of all of the nodes

Span - T, longest path

Parallel Speed-up
• Speed-up on P processors: T1 / TP

• If speed-up is P, we call it perfect linear speed-up

– e.g., doubling P halves running time

– hard to achieve in practice

• Parallelism is the maximum possible speed-up: T1 / T 

– if you had infinite processors

11/18/2022 CSE 332 6

2

Estimating Tp

• How to estimate TP ?

• Lower bounds on TP

Tp  T 

Tp  T1 / P

– which one is the tighter (higher) lower bound?

• The ForkJoin Java Framework achieves the following
asymptotic time bound:

TP is O(T  + T1 / P)
– this bound is optimal

11/18/2022 CSE 332 7

Amdahl’s Law

• Most programs have

1. parts that parallelize well

2. parts that don’t parallelize at all

• The latter become bottlenecks

11/18/2022 CSE 332 8

Amdahl’s Law

• Let T1 = 1 unit of time

• Let S = proportion that can’t be parallelized

1 = T1 = S + (1 – S)
• Suppose we get perfect linear speedup on the parallel portion:

TP =

• So the overall speed-up on P processors is (Amdahl’s Law):

T1 / T P =

T1 / T  =

• If 1/3 of your program is parallelizable, max speedup is:

11/18/2022 CSE 332 9

Take Aways

• Parallel algorithms can be a big win

• Many fit standard patterns that are easy to implement

• Can’t just rely on more processors to make things faster
(Amdahl’s Law)

11/18/2022 CSE 332 10

Parallelizable?

• Prefix-sum:

• output[𝑗] = σ𝑖=0
𝑗 input[𝑖]

input

output

6 3 11 10 8 2 7 8

11/18/2022 CSE 332 11

Parallel prefix-sum

• The parallel-prefix algorithm does two passes

– Each pass has O(n) work and O(log n) span

– So in total there is O(n) work and O(log n) span

– So like with array summing, parallelism is n/log n

• First pass builds a tree bottom-up: the “up” pass

• Second pass traverses the tree top-down: the
“down” pass

11/18/2022 CSE 332 12

3

Parallel Prefix: The Up Pass

We build want to build a binary tree where

• Root has sum of the range [x,y)
• If a node has sum of [lo,hi) and hi>lo,

– Left child has sum of [lo,middle)
– Right child has sum of [middle,hi)
– A leaf has sum of [i,i+1), which is simply input[i]

It is critical that we actually create the tree as we will need it for the
down pass

• We do not need an actual linked structure
• We could use an array as we did with heaps

Analysis of first step: Work = Span =

11/18/2022 CSE 332 13

The algorithm, part 1

1. Propagate ‘sum’ up: Build a binary tree where
– Root has sum of input[0]..input[n-1]
– Each node has sum of input[lo]..input[hi-1]

• Build up from leaves; parent.sum=left.sum+right.sum

– A leaf’s sum is just it’s value; input[i]

This is an easy fork-join computation: combine results by
actually building a binary tree with all the sums of ranges
– Tree built bottom-up in parallel
– Could be more clever; ex. Use an array as tree representation

like we did for heaps

Analysis of first step: O(n) work, O(log n) span

11/18/2022 CSE 332 14

input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7.8
s
f

Do an initial pass to gather
information, enabling us to do a
second pass to get the answer

First we’ll gather
the ‘sum’ for each
recursive block

11/18/2022 CSE 332 15

The algorithm, part 2
2. Propagate ‘fromleft’ down:

– Root given a fromLeft of 0
– Node takes its fromLeft value and

• Passes its left child the same fromLeft
• Passes its right child its fromLeft plus its left child’s sum (as stored in part

1)

– At the leaf for array position i,
output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)
– Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: O(n) work, O(log n) span
Analysis of second step: O(n) work, O(log n) span
Total for algorithm: O(n) work, O(log n) span

11/18/2022 CSE 332 16

input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7,8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

Using ‘sum’, get the
sum of everything to
the left of this range
(call it ‘fromleft’);
propagate down from
root

11/18/2022 CSE 332 17
18

First Pass: Sum

Sum [0,7]:

Sum [0,3]: Sum [4,7]:

Sum [0,1]: Sum [2,3]: Sum [4,5]: Sum [5,7]:

6 3 11 10 8 2 7 8

5/9/2022 CSE 332 18

4

19

2nd Pass: Use Sum for Prefix-Sum

Sum [0,7]: 55

Sum<0: 0

Sum [0,3]: 30

Sum<0: 0

Sum [4,7]: 25

Sum<4:

Sum [0,1]: 9

Sum<0: 0

Sum [2,3]: 21

Sum<2:

Sum [4,5]: 10

Sum<4:

Sum [6,7]: 15

Sum<6:

6 3 11 10 8 2 7 8

5/9/2022 CSE 332 19

A nodes computation

5/9/2022 CSE 332 20

sum = left.sum + right.sum

left.fromLeft = fromLeft right.fromLeft =
fromLeft + left.sum

Parallel Prefix, Generalized

• Prefix-sum is another common pattern (prefix problems)

– maximum element to the left of i

– is there an element to the left of i satisfying some property?

– count of elements to the left of i satisfying some property

– …

• We can solve all of these problems in the same way

11/18/2022 CSE 332 21

Pack

• Pack:

• Output array of elements satisfying test, in original order

input

output

6 3 11 10 8 2 7 8 test: X < 8?

11/18/2022 CSE 332 22

Parallel Pack?

•Pack

•Determining which elements to include is easy

•Determining where each element goes in output is hard

– seems to depend on previous results

input

output 6 3 2 7

6 3 11 10 8 2 7 8 test: X < 8?

11/18/2022 CSE 332 23

Parallel Pack

input

test 1 1 0 0 0 1 1 0

6 3 11 10 8 2 7 8 test: X < 8?

1. map test input, output [0,1] bit vector

11/18/2022 CSE 332 24

5

Parallel Pack

input

test 1 1 0 0 0 1 1 0

6 3 11 10 8 2 7 8 test: X < 8?

1. map test input, output [0,1] bit vector

2. transform bit vector into array of indices into result array

1 2 3 4pos

11/18/2022 CSE 332 25

Parallel Pack

input

test 1 1 0 0 0 1 1 0

6 3 11 10 8 2 7 8 test: X < 8?

1. map test input, output [0,1] bit vector

2. prefix-sum on bit vector

1 2 2 2 2 3 4 4

3. map input to corresponding positions in output

pos

6 3 2 7

- if (test[i] == 1) output[pos[i]] = input[i]

output

11/18/2022 CSE 332 26

Parallel Pack Analysis

• Parallel Pack

1. map: O() span

2. sum-prefix: O() span

3. map: O() span

• Total: O() span

11/18/2022 CSE 332 27

