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CSE 332: Data Structures and 
Parallelism

Spring 2022

Richard Anderson

Lecture 21: Parallel Algorithms
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Announcements  

• Read parallel computing notes by Dan 

Grossman 3.5-5.4
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Recap

• Last lectures

– simple parallel programs

– fork-join/thread programming

– common patterns:  reduce, map 

– analysis tools (task graph, work, span, parallelism)

• Now

– Amdahl’s Law

– useful building blocks:  prefix, pack

– parallel quicksort, merge sort
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Analyzing Parallel Programs

Let TP be the running time on P processors

Two key measures of run-time:

• Work: How long it would take 1 processor = T1

• Span: How long it would take infinity processors = T

– The hypothetical ideal for parallelization

– This is the longest “dependence chain” in the computation

– Example: O(log n) for summing an array 

– Also called “critical path length” or “computational depth”
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Task Graph
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A parallel program can be modelled as a directed 
acyclic graph

Work – T1,  sum of times of all of the nodes

Span - T,   longest path

Parallel Speed-up
• Speed-up on P processors: T1 / TP 

• If speed-up is P, we call it perfect linear speed-up

– e.g., doubling P halves running time

– hard to achieve in practice

• Parallelism is the maximum possible speed-up: T1 / T 

– if you had infinite processors
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Estimating Tp

• How to estimate TP ?

• Lower bounds on TP

Tp  T 

Tp  T1 / P

– which one is the tighter (higher) lower bound?

• The ForkJoin Java Framework achieves the following 
asymptotic time bound:

TP is  O(T  + T1 / P)
– this bound is optimal
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Amdahl’s Law

• Most programs have 

1. parts that parallelize well

2. parts that don’t parallelize at all

• The latter become bottlenecks
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Amdahl’s Law

• Let T1 = 1 unit of time

• Let S = proportion that can’t be parallelized

1 = T1 = S + (1 – S)
• Suppose we get perfect linear speedup on the parallel portion:

TP =

• So the overall speed-up on P processors is (Amdahl’s Law):

T1 / T P =

T1 / T  =

• If 1/3 of your program is parallelizable, max speedup is:
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Take Aways

• Parallel algorithms can be a big win

• Many fit standard patterns that are easy to implement

• Can’t just rely on more processors to make things faster 
(Amdahl’s Law)
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Parallelizable?

• Prefix-sum:

• output[𝑗] = σ𝑖=0
𝑗 input[𝑖]

input

output

6 3 11 10 8 2 7 8
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Parallel prefix-sum

• The parallel-prefix algorithm does two passes

– Each pass has O(n) work and O(log n) span

– So in total there is O(n) work and O(log n) span

– So like with array summing, parallelism is n/log n

• First pass builds a tree bottom-up: the “up” pass

• Second pass traverses the tree top-down: the 
“down” pass

11/18/2022 CSE 332 12



3

Parallel Prefix: The Up Pass

We build want to build a binary tree where 

• Root has sum of the range [x,y)
• If a node has sum of [lo,hi) and hi>lo, 

– Left child has sum of [lo,middle)
– Right child has sum of [middle,hi) 
– A leaf has sum of [i,i+1), which is simply input[i]

It is critical that we actually create the tree as we will need it for the 
down pass

• We do not need an actual linked structure
• We could use an array as we did with heaps

Analysis of first step: Work = Span =
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The algorithm, part 1

1. Propagate ‘sum’ up: Build a binary tree where 
– Root has sum of input[0]..input[n-1]
– Each node has sum of input[lo]..input[hi-1]

• Build up from leaves; parent.sum=left.sum+right.sum

– A leaf’s sum is just it’s value; input[i]

This is an easy fork-join computation: combine results by 
actually building a binary tree with all the sums of ranges
– Tree built bottom-up in parallel
– Could be more clever; ex. Use an array as tree representation 

like we did for heaps

Analysis of first step: O(n) work, O(log n) span
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input

output

6 4 16 10 16 14 2 8

range  0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r  0,1
s  
f

r  1,2
s  
f

r  2,3
s  
f

r  3,4
s  
f

r  4,5
s  
f

r  5,6
s  
f

r  6,7
s  
f

r  7.8
s  
f

Do an initial pass to gather 
information, enabling us to do a 
second pass to get the answer

First we’ll gather 
the ‘sum’ for each 
recursive block
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The algorithm, part 2
2. Propagate ‘fromleft’ down:

– Root given a fromLeft of 0
– Node takes its fromLeft value and

• Passes its left child the same fromLeft
• Passes its right child its fromLeft plus its left child’s sum (as stored in part 

1)

– At the leaf for array position i, 
output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1 
and produce no result (the leaves assign to output)
– Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: O(n) work, O(log n) span 
Analysis of second step: O(n) work, O(log n) span
Total for algorithm: O(n) work, O(log n) span
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input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r  0,1
s  
f

r  1,2
s  
f

r  2,3
s  
f

r  3,4
s  
f

r  4,5
s  
f

r  5,6
s  
f

r  6,7
s  
f

r  7,8
s  
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

Using ‘sum’, get the 
sum of everything to 
the left of this range 
(call it ‘fromleft’); 
propagate down from 
root
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First Pass:  Sum

Sum [0,7]:

Sum [0,3]: Sum [4,7]:

Sum [0,1]: Sum [2,3]: Sum [4,5]: Sum [5,7]:

6 3 11 10 8 2 7 8
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2nd Pass:  Use Sum for Prefix-Sum

Sum [0,7]: 55

Sum<0: 0

Sum [0,3]: 30

Sum<0: 0

Sum [4,7]: 25

Sum<4:

Sum [0,1]: 9

Sum<0: 0

Sum [2,3]: 21

Sum<2:

Sum [4,5]: 10

Sum<4:

Sum [6,7]: 15

Sum<6:

6 3 11 10 8 2 7 8
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A nodes computation
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sum = left.sum + right.sum

left.fromLeft = fromLeft right.fromLeft = 
fromLeft + left.sum

Parallel Prefix, Generalized

• Prefix-sum is another common pattern (prefix problems)

– maximum element to the left of i

– is there an element to the left of i satisfying some property?

– count of elements to the left of i satisfying some property

– …

• We can solve all of these problems in the same way
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Pack

• Pack: 

• Output array of elements satisfying test, in original order

input

output

6 3 11 10 8 2 7 8 test:  X < 8?
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Parallel Pack?

•Pack

•Determining which elements to include is easy

•Determining where each element goes in output is hard

– seems to depend on previous results

input

output 6 3 2 7

6 3 11 10 8 2 7 8 test:  X < 8?
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Parallel Pack

input

test 1 1 0 0 0 1 1 0

6 3 11 10 8 2 7 8 test:  X < 8?

1.  map test input, output [0,1] bit vector
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Parallel Pack

input

test 1 1 0 0 0 1 1 0

6 3 11 10 8 2 7 8 test:  X < 8?

1.  map test input, output [0,1] bit vector

2.  transform bit vector into array of indices into result array

1 2 3 4pos

11/18/2022 CSE 332 25

Parallel Pack

input

test 1 1 0 0 0 1 1 0

6 3 11 10 8 2 7 8 test:  X < 8?

1.  map test input, output [0,1] bit vector

2.  prefix-sum on bit vector

1 2 2 2 2 3 4 4

3.  map input to corresponding positions in output

pos

6 3 2 7

- if (test[i] == 1) output[pos[i]] = input[i]

output
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Parallel Pack Analysis

• Parallel Pack

1. map:             O(        ) span

2. sum-prefix:   O(        ) span

3. map:             O(        ) span

• Total:      O(        ) span
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